题名

超重力系統中以深共熔溶 劑混合醇胺 吸收二氧化碳

并列篇名

Capture of Carbon Dioxide by a Mixture of Alkanolamine and Deep Eutectic Slovent in a Rotating Packed Bed

DOI

10.6840/cycu201600672

作者

吳逸甯

关键词

旋轉填充床 ; 二氧化碳 ; 深共熔溶劑 ; 醇胺 ; rotating packed bed ; carbon dioxide ; deep eutectic solvent ; alkanolamine

期刊名称

中原大學化學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳昱劭

内容语文

繁體中文

中文摘要

本研究於旋轉填充床反應器中利用化學吸收之方式移除二氧化碳,吸收劑為單乙醇胺(MEA)和2-甲基乙醇胺(MMEA)混合深共熔溶劑(DES),其中DES為氯化膽鹼/乙二醇,並改變轉速、氣體流率、溫度與吸收劑配方之醇胺濃度及吸收劑中水與DES比例等操作參數,藉由測量實驗系統中氣體出口之二氧化碳濃度數值變化,探討操作參數對二氧化碳移除率、總括體積氣膜質傳係數及吸收劑之二氧化碳負載量之影響。 實驗結果顯示,移除率會隨著溫度、吸收劑中醇胺濃度及吸收劑中水的比例的增加而上升,隨氣體流率增加而下降,在轉速為600~1800 rpm時,移除率會隨轉速上升,當轉速提升至2400 rpm時則有些微下降,而MMEA的移除率高於MEA。總括體積氣膜質傳係數隨轉速、溫度、吸收劑中醇胺濃度及吸收劑中水的比例的增加而上升,但是提高氣量會使氣-液在床體中接觸時間縮短,不利反應,故提高氣量會使總括體積氣膜質傳係數下降。吸收劑之二氧化碳負載量則會隨著轉速、氣體流率、溫度及吸收劑中水的比例的增加而上升,隨吸收劑中醇胺濃度增加而下降。再生能量隨吸收劑中水量減少再生能量下降,且吸收劑中含MMEA之再生能量較MEA低。 本實驗在吸收劑為MMEA/DES/H2O(30:40:30)操作在氣量為50 L/min、液量為0.1 L/min、溫度為40℃及轉速在2400 rpm下,與30 wt% MEA水溶液相比,移除率可提高20.5%,再生能量則可由3.61 GJ/ton CO2降低為2.88 GJ/ton CO2。

英文摘要

In this study, a mixture of alkanolamine, such as MEA and MMEA, with a deep eutectic solvent (DES) of choline chloride (ChCl)/ethylene glycol (EG) used as an absorbent to capture CO2 from gas stream in a rotating packed bed. The effects of rotating speed, gas flow rate, temperature, concentration of alkanolamine and ratio of water and DES in the absorbent on CO2 removal efficiency (E), mass transfer coefficient (KGa) and CO2 loading were investigated. Experimental results showed that CO2 removal efficiency increased with increasing temperature, concentration of alkanolamine, ratio of water in the absorbent and rotating speed ranging between 600 and 1800 rpm, but decreased with increasing gas flow rate. A decreased of ratio of water in the absorbent reduced the removal efficiency because of the increasing viscosity. The removal efficiency of MMEA is higher than that of MEA, because of the reaction rate of MMEA is higher. The mass transfer coefficient values increased with increasing rotating speed, temperature, concentration of alkanolamine and ratio of water in the absorbent. Increasing gas flow rate reduced the contact time of gas and liquid in the rotating packed bed, and thus, the mass transfer coefficient decreased with the gas flow rate. The regeneration energy of each absorbent was calculated in this study. Results showed that the regeneration energy decreased with increasing the ratio of water in the absorbent. Besides, the regeneration energy of MMEA is lower than that of MEA. In this study, an optimum composition of absorbent of MMEA/DES/H2O (30:40:30) was obtained. Compared with 30 wt% MEA solution, the removal efficiency of the proposed absorbent was increased from 69% to 86.8% at gas flow rate of 50 L/min, liquid flow rate of 0.1 L/min, while the regeneration energy can be reduced from 3.61 GJ/ton CO2 to 2.88 GJ/ton CO2. This shows that the use of DES mixed with alkanolamine has a great potential for CO2 capture in a higee system.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., “Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids,” J. Am. Chem. Soc., 2004, 126, 9142-9147.
    連結:
  2. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R., “Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures,” Inorg. Chem., 2004, 43, 11, 3447-3452.
    連結:
  3. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., “Ionic Liquid Analogues Formed from Hydrated Metal Salts,” Chem. Eur. J., 2004, 10, 3769-3774.
    連結:
  4. Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S., “Electrodeposition of Zinc-Tin Alloys from Deep Eutectic Solvents Based on Choline Chloride,” J. Electroanal. Chem., 2007, 599, 288-294.
    連結:
  5. Abass A.O., “CO2 Capture and Separation Technologies for End-of-Pipe Applications - A Review,” Energy, 2010, 35, 2610-2628.
    連結:
  6. Ali, E., Hadj-Kali, M.K., Mulyono, S., Alnashef, I., Fakeeha, A., Mjalli, F., Hayyan, A., “Solubility of CO2 in Deep Eutectic Solvents: Experiments and Modeling Using the Peng-Robinson Equation of State,” Chem. Eng. Res. Des., 2014, 92, 1898-1906.
    連結:
  7. Aroonwilas, A., Tontiwachwuthikul, P., “Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing,” Ind. Eng. Chem. Res., 1998, 37, 569-575.
    連結:
  8. Barbarossa, V., Barzagli, F., Mani, F., Lai, S., Stoppioni, P., Vanga, G., “Efficient CO2 Capture by Non-Aqueous 2-Amino-2-Methyl-1-Propanol (AMP) and Low Temperature Solvent Regeneration,” RSC., 2013, 3, 12349-12355.
    連結:
  9. Barzagli, F., Mani, F., Peruzzini, M., “Efficient CO2 Absorption and Low Temperature Desorption with Non-Aqueous Solvents Based on 2-Amino-2-Methyl-1-Propanol (AMP),” Int. J. Greenh. Gas Control, 2013, 16, 217-223.
    連結:
  10. Burns, J.R., Ramshaw, C., “Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,” Chem. Eng. Sci., 1996, 51, 8, 1347-1352.
    連結:
  11. Chakma, A., “CO2 Capture Processes - Opportunities for Improved Energy Efficiencies,” Energ. Convers. Manage., 1997, 38, 51-56.
    連結:
  12. Chen, J.F., Lia, Y.L., Wang, Y.H., Yun, J., Cao D., “Preparation and Characterization of Zinc Sulfide Nanoparticles under High-Gravity Environment,” Mater. Res. Bull., 2004, 39, 185-194.
    連結:
  13. Chen, S.I., Chen, S.Y., Fei, X.Y., Zhang, Y.C., Qin, L.A., “Solubility and Characterization of CO2 in 40 mass% N‑Ethylmonoethanolamine Solutions: Explorations for an Efficient Nonaqueous Solution,” Ind. Eng. Chem. Res., 2015, 54, 7212-7218.
    連結:
  14. Chen, Y.S., “Correlations of Mass Transfer Coefficients in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2011, 50, 1778-1785.
    連結:
  15. Chen, Y.S., Lin, C.C., Liu, H.S., “Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and Non-Newtonian Fluids,” Ind. Eng. Chem. Res., 2005, 44, 1043-1051.
    連結:
  16. Chen, Y.S., Lin, F.Y., Lin, C.C., Tai, C.Y.D., Liu, H.S., “Packing Characteristics for Mass Transfer in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2006, 45, 6846-6853.
    連結:
  17. Chen, Y.S., Liu, H.S., “Absorption of VOCs in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2002, 41, 1583-1588.
    連結:
  18. Cheng, H.H., Shen, J.F., Tan, C.S., “CO2 Capture from Hot Stove Gas in Steel Making Process,” Int. J. Greenh. Gas Control, 2010, 4, 525-531.
    連結:
  19. Cheng, H.H., Tan C.S., “Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed,” Energy Procedia, 2008, 1, 925-932.
    連結:
  20. Dow Chemical, “Gas Sweetening,” 1998.
    連結:
  21. Dubois, L., Thomas, D., “Study of the Postcombustion CO2 Capture by Absorption into Amine(s) Based Solvents: Application to Cement Flue Gases,” Energy Procedia, 2013, 37, 1639-1647.
    連結:
  22. Dugas, R.E., Rochelle, G.T., “Modeling CO2 Absorption into Concentrated Aqueous Monoethanolamine and Piperazine,” Chem. Eng., Sci. 2011, 66, 5212-5218.
    連結:
  23. Fischer, V., “Properties and Applications of Deep Eutectic Solvents and Low-Melting Mixtures,” PhD dissertation, Universität Regensburg, 2015.
    連結:
  24. Francisco, M., Bruinhorst, A., Kroon, M.C., “Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents,” Angew. Chem. Int. Ed., 2013, 52, 3074-3085.
    連結:
  25. Fu, K.Y., Rongwong, W., Liang, Z.W., Na, Y.Q., Idem, R., Tontiwachwuthikul, P., “Experimental Analyses of Mass Transfer and Heat Transfer of Post-Combustion CO2 Absorption Using Hybrid Solvent MEA-MeOH in An Absorber,” Chem. Eng. J., 2015, 260, 11-19.
    連結:
  26. Gambino, M., Bros, J.P., “Capacite Calorifique de L'uree et de Quelques Melanges Eutectiques a Base D'uree Entre 30 et 140° C,” Thermochimica Acta, 1988, 127, 223.
    連結:
  27. Gill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., Jackson, R.B., “Nonlinear Grassland Responses to Past and Future Atmospheric CO2,” Nature, 2002, 417, 279-282.
    連結:
  28. Gorke, J.T., Srienc, F., Kazlauskas, R. J., “Hydrolase-Catalyzed Biotransformations in Deep Eutectic Solvents,” Chem. Commun., 2008, 1235-1237.
    連結:
  29. Guo, K., Guo, F., Feng, Y., Chen, J., Zheng, C., Gardner, N.C., “Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-Bed Contactor,” Chem. Eng. Sci., 2000, 55, 1699-1706.
    連結:
  30. Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., “Perspectives on Microalgal CO2-Emission Mitigation Systems - A Review,” Bio. technol., Adv. 2011, 29, 189-198.
    連結:
  31. Jassim, M.S., Rochelle, G., Eimer, D., Ramshaw, C., “Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2007, 46, 2823-2833.
    連結:
  32. Jou, F.Y., Otto, F.D., Mather, A.E., “Solubility of H2S and CO2 in Diethylene Glycol at Elevated Pressures,” Fluid Phase Equilib., 2000, 175, 53-61.
    連結:
  33. Kierzkowska-Pawlak, H., Siemieniec, M., Chacuk, A., “Reaction Kinetics of CO2 in Aqueous Methyldiethanolamine Solutions Using the Stopped-Flow Technique,” Chem. Eng. Prog., 2011, 33, 1, 7-18.
    連結:
  34. Kim, I., Svendsen, H.F., “Comparative Study of the Heats of Absorption of Post-Combustion CO2 Absorbents,” Int. J. Greenh. Gas Control, 2011, 5, 390-395.
    連結:
  35. Kumar, M.P., Rao, D.P., “Studies on a High-Gravity Gas-Liquid Contactor,” Ind. Eng. Chem. Res., 1990, 29, 917-920.
    連結:
  36. Leron, R.B., Li, M.H., “Molar Heat Capacities of Choline Chloride-Based Deep Eutectic Solvents and Their Binary Mixtures with Water,” Thermochimica Acta, 2012, 530, 52-57.
    連結:
  37. Lin, C.C. , Wei, T.Y. , Hsu, S.K., Liu, W.T., “Performance of a Pilot-Scale Cross-Flow Rotating Packed Bed in Removing VOCs from Waste Gas Streams,” Sep. Purif. Technol., 2006, 52, 274-279.
    連結:
  38. Lin, C.C., Chao, C.Y., Liu, M.Y., Lee, Y.L., “Feasibility of Ozone Absorption by H2O2 Solution in Rotating Packed Beds,” J. Hazard. Mater., 2009, 167, 1014-1020.
    連結:
  39. Lin, C.C., Chen B.C., “Carbon Dioxide Absorption into NaOH Solution in a Cross-flow Rotating Packed Bed,” J. Ind. Eng. Chem., 2007, 13, 7, 1083-1090.
    連結:
  40. Lin, C.C., Chen, B.C., “Characteristics of Cross-Flow Rotating Packed Beds,” J. Ind. Eng. Chem., 2008, 14, 322-327.
    連結:
  41. Lin, C.C., Chen, B.C., Chen, Y.S., Hsu, S.K., “Feasibility of a Cross-Flow Rotating Packed Bed in Removing Carbon Dioxide from Gaseous Streams,” Sep. Purif. Technol., 2008, 62, 507-512.
    連結:
  42. Lin, C.C., Jian, G.S., “Characteristics of a Rotating Packed Bed Equipped with Blade Packings,” Sep. Purif. Technol., 2007, 54, 51-60.
    連結:
  43. Lin, C.C., Lin, Y.H., Tan, C.S., “Evaluation of Alkanolamine Solutions for Carbon Dioxide Removal in Cross-Flow Rotating Packed Beds,” J. Hazard. Mater., 2010, 175, 344-351.
    連結:
  44. Lin, C.C., Liu, W.T., Tan, C.S., “Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2003, 42, 2381-2386.
    連結:
  45. Lin, C.C., Wu, M.S., “Continuous Production of CuO Nanoparticles in a Rotating Packed Bed,” Ceram Ind., 2016, 42, 2133-2139.
    連結:
  46. Lin, C.M., Leron, R.B., Caparanga, A.R., Li, M.H., “Henry’s Constant of Carbon Dioxide-Aqueous Deep Eutectic Solvent (Choline Chloride/Ethylene Glycol, Choline Chloride/Glycerol, Choline Chloride/Malonic Acid) Systems,” J. Chem. Thermodynamics, 2014, 68, 216–220.
    連結:
  47. Lin, P.H., Wong, D.S.H., “Carbon Dioxide Capture and Regeneration with Amine/Alcohol/Water Blends,” Int. J. Greenh. Gas Control, 2014, 26, 69-75.
    連結:
  48. Littel, R.J., Versteeg, G.F., Van Swaaij W.P.M., “Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions-II. Influence of Temperature on Zwitterion Formation and Deprotonation Rates,” Chem. Eng. Sci., 1992, 47, 8, 2037-2943.
    連結:
  49. Liu, H.S., Lin, C.C., Wu, S.C., Hsu, H.W., “Characteristics of a Rotating Packed Bed,” Ind. Eng. Chem. Res., 1996, 35, 3590-3596.
    連結:
  50. Luo, P.C., Zhang, Z.B., Jiao, Z., Wang, Z.X., “Investigation in the Design of a CO2 Cleaner System by Using Aqueous Solutions of Monoethanolamine and Diethanolamine,” Ind. Eng. Chem. Res., 2003, 42, 4861-4866.
    連結:
  51. Luo, Y., Chu, G.W., Zou, H.K., Zhao, Z.Q., Dudukovic, M.P., Chen, J.F., “Gas-Liquid Effective Interfacial Area in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2012, 51, 16320-16325.
    連結:
  52. Maham, Y., Hepler, L.G., Mather, A.E., Hakin, A.W., Marriott, R.A., “Molar Heat Capacities of Alkanolamines from 299.1 to 397.8 K Group Additivity and Molecular Connectivity Analyses,” J. Chem. Soc., Faraday Trans., 1997, 93, 9, 1747-1750.
    連結:
  53. Maugeri, M.S.Z., “Deep Eutectic Solvents: Properties and Biocatalytic Applications,” PhD dissertation, RWTH Aachen University, 2014.
    連結:
  54. MEGlobal, “Diethylene Glycol Product Guide,” 2005
    連結:
  55. Miyano, Y., Fujihara, I., “Henry’s Constants of Carbon Dioxide in Methanol at 250-500 K,” Fluid Phase Equilib., 2004, 221, 57-62.
    連結:
  56. Mudhasakul, S., Ku, H.M., Douglas, P.L., “A Simulation Model of a CO2 Absorption Process with Methyldiethanolamine Solvent and Piperazine as an Activator,” Int. J. Greenh. Gas Control, 2013, 15, 134-141.
    連結:
  57. Munjal, S., Dudukovć, M.P., Ramachandran, P., “Mass-Transfer in Rotating Packed Beds-I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Correlations,” Chem. Eng. Sci., 1989, 44, 10, 2245-2256.
    連結:
  58. Notz, R., Tonnies, I., McCann, N., Scheffknecht, G., Hasse, H., “CO2 Capture for Fossil Fuel-Fired Power Plants,” Chem. Eng. Technol., 2011, 34, 2, 163-172.
    連結:
  59. Olajire, A.A., “CO2 Capture and Separation Technologies for End-of-Pipe Applications - A Review,” Energy, 2010, 35, 2610-2628.
    連結:
  60. Pask, S.D., Cai, Z., Mack, H., Marc, L., Nuyken, O., “The Spinning Disk Reactor for Polymers and Nanoparticles,” Macromol. React. Eng., 2013, 7, 98-106.
    連結:
  61. Rodriguez-Flores, H.A., Mello, L.C., Salvagnini, W.M., de Paiva, J.L., “Absorption of CO2 into Aqueous Solutions of MEA and AMP in a Wetted Wall Column with Film Promoter,” Chem. Eng. Prog., 2013, 73, 1-6.
    連結:
  62. Sawistoski, H., “Flooding Velocities in Packed Columns Operating at Reduced Pressure,” Chem. Eng. Sci., 1957, 6, 138.
    連結:
  63. Singh, S.P., Wilson, J.H., Counce, R.M., Villiers-Fisher, J J.F., Jenningst, H.L., “Removal of Volatile Organic Compounds from Groundwater Using a Rotary Air Stripper,” Ind. Eng. Chem. Res., 1992, 31, 574-580.
    連結:
  64. Smith, E.L., Abbott, A.P., Ryder, K.S., “Deep Eutectic Solvents (DESs) and Their Applications,” Chem. Rev., 2014, 114, 11060-11082.
    連結:
  65. Sung, W.D., Chen, Y.S., “Characteristics of a Rotating Packed Bed Equipped with Blade Packings and Baffles,” Sep. Purif. Technol., 2012, 93, 52-58.
    連結:
  66. Tung, H.H., Mah, R.S.H., “Modeling Liquid Mass Transfer in Higee Separation Process,” Chem. Eng. Commun., 1985, 39, 147-153.
    連結:
  67. Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., “Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review,” Chem. Eng. Res. Des., 2011, 89, 1609-1624.
    連結:
  68. Wu, S.H., Caparanga, A.R., Leron, R.B., Li, M.H., “Vapor Pressure of Aqueous Choline Chloride-Based Deep Eutectic Solvents (Ethaline, Glyceline, Maline And Reline) at 30–70 ◦C,” Thermochimica Acta, 2012, 544, 1-5.
    連結:
  69. Xie, Y.J., Dong, H.F., Zhang, S.J., Lu, X.H., Ji, X.Y., “Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea,” J. Chem. Eng. Data, 2014, 59, 3344-3352.
    連結:
  70. Yu C.H., Tan, C.S., “Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed,” Energy Procedia, 2013, 37, 455-460.
    連結:
  71. Yu, C.H., Cheng, H.H., Tan, C.S., “CO2 Capture by Alkanolamine Solutions Containing Diethylenetriamine and Piperazine in a Rotating Packed Bed,” Int. J. Greenh. Gas Control, 2012, 9, 136-147.
    連結:
  72. Yu, C.H., Wu, T.W., Tan, C.S., “CO2 Capture by Piperazine Mixed with Non-Aqueous Solvent Diethylene Glycol in a Rotating Packed Bed,” Int. J. Greenh. Gas Control, 2013, 19, 503-509.
    連結:
  73. Yu, Y.S., Lu, H.F., Zhang, T.T., Zhang, Z.X., Wang, G.X., Rudolph, V., “Determining the Performance of an Efficient Nonaqueous CO2 Capture Process at Desorption Temperatures below 373 K,” Ind. Eng. Chem. Res., 2013, 52, 12622-12634.
    連結:
  74. Zhang Y.Y., Ji X.Y., Lu X.H., “Application of Choline-Based Deep Eutectic Solvents in CO2 Capture and Separation,” CIESC Journal, 2014, 65, 5, 1721-1728.
    連結:
  75. Zhao, B.T., Su, Y.X., Tao, W.W., Li, L.L., Peng, Y.C. “Post-Combustion CO2 Capture by Aqueous Ammonia: A State-of-the-Art Review,” Int. J. Greenh. Gas Control, 2012, 9, 355-371.
    連結:
  76. 黃小萍;“使用氣提法在旋轉填充床中移除氨之研究,” 中原大學碩士論文2013.
    連結:
  77. Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., Feron, P.H.M., Versteeg, G.F., “CO2 Capture from Power Plants Part I. A parametric Study of the Technical Performance Based on Monoethanolamine,” Int. J. Greenh. Gas Control, 2007, 1, 37-46.
  78. Kohlz, A.L., Nielsen R.B., “Gas Purification (Fifth Edition),” Gulf Publishing Company, 1997, Texas.
  79. Li L.,“Carbon Dioxide Solubility and Mass Transfer in Aqueous Amines for Carbon Capture,” PhD dissertation, The University of Texas at Austin, 2015.
  80. https://triz-journal.com/breakthrough-carbon-capture-exploiting-trade-offs/
被引用次数
  1. 張剛耀(2017)。旋轉填充床中醇胺混合深共熔溶劑捕獲二氧化碳與其模擬。中原大學化學工程學系學位論文。2017。1-152。