参考文献
|
-
蔡嘉哲,運用萬用啟發式演算法解醫護人員排班問題,中原大學工業與系統工程學系碩士論文,2015。
連結:
-
參考文獻
-
Awadallah, M. A., Bolaji, A. L., and Al-Betar, M. A. (2015). A hybrid artificial bee colony for a nurse rostering problem. Applied Soft Computing, 35, 726-739.
-
Burke, E. K., De Causmaecker, P., Vanden Berghe, G., and Van Landeghem, H. (2004). The state of the art of nurse rostering. Journal of Scheduling, 7(6), 441-499.
-
Burke, E. K., Li, J. P., and Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. European Journal of Operational Research, 203(2), 484-493.
-
Cheang, B., Li, H., Lim, A., and Rodrigues, B. (2003). Nurse rostering problems - a bibliographic survey. European Journal of Operational Research, 151(3), 447-460.
-
Chen, H., Rong, W. E., Ma, X. Y., Qu, Y., and Xiong, Z. (2017). An extended technology acceptance model for mobile social gaming service popularity analysis. Mobile Information Systems, Article ID 3906953.
-
Chen, P. S., Lin, Y. J., and Peng, N. C. (2016). A two-stage method to determine the allocation and scheduling of medical staff in uncertain environments. Computers & Industrial Engineering, 99, 174-188.
-
Chen, P. S., Yu, C. J., and Chen, G. Y. H. (2015). Applying task-technology fit model to the healthcare sector: A case study of hospitals' computed tomography patient-referral mechanism. Journal of Medical Systems, 39(8), 80-93.
-
D'Ambra, J., Wilson, C. S., and Akter, S. (2013). Application of the task-technology fit model to structure and evaluate the adoption of e-books by academics. Journal of the American Society for Information Science and Technology, 64(1), 48-64.
-
Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer-technology - a comparison of 2 theoretical-models. Management Science, 35(8), 982-1003.
-
Dishaw, M. T., and Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1), 9-21.
-
Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management Science, 41(12), 1827-1844.
-
Goodhue, D. L. (1998). Development and measurement validity of a task-technology fit instrument for user evaluations of information systems. Decision Sciences, 29(1), 105-138.
-
Goodhue, D. L., and Thompson, R. L. (1995). Task-technology fit and individual-performance. Mis Quarterly, 19(2), 213-236.
-
Jin, S. H., Yun, H. Y., Jeong, S. J., and Kim, K. S. (2017). Hybrid and cooperative strategies using harmony search and artificial immune systems for solving the nurse rostering problem. Sustainability, 9(7), 1090-1108.
-
Kennedy, J., and Eberhart, R. C. (1995). Particle swarm optimization. IEEE International Conference on Neural Networks, 1942-1948.
-
Lin, H. C. (2017). Nurses' satisfaction with using nursing information systems from technology acceptance model and information systems success model perspectives a reductionist approach. Computers Informatics Nursing, 35(2), 91-99.
-
Lin, W. S., and Wang, C. H. (2012). Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Computers & Education, 58(1), 88-99.
-
Mischek, F., and Musliu, N. (2019). Integer programming model extensions for a multi-stage nurse rostering problem. Annals of Operations Research, 275(1), 123-143.
-
Nadri, H., Rahimi, B., Afshar, H. L., Samadbeik, M., and Garavand, A. (2018). Factors affecting acceptance of hospital information systems based on extended technology acceptance model: A case study in three paraclinical departments. Applied Clinical Informatics, 9(2), 238-247.
-
Ngai, E. W. T., Poon, J. K. L., and Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & Education, 48(2), 250-267.
-
Rahimian, E., Akartunali, K., and Levine, J. (2017). A hybrid Integer programming and variable neighbourhood search algorithm to solve nurse rostering problems. European Journal of Operational Research, 258(2), 411-423.
-
Rajeswari, M., Amudhavel, J., Pothula, S., and Dhavachelvan, P. (2017). Directed bee colony optimization algorithm to solve the nurse rostering problem. Computational Intelligence and Neuroscience, Article ID 6563498.
-
Todorovic, N., and Petrovic, S. (2013). Bee colony optimization algorithm for nurse rostering. IEEE Transactions on Systems Man Cybernetics-Systems, 43(2), 467-473.
-
Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., and Housos, E. (2012). A systematic two phase approach for the nurse rostering problem. European Journal of Operational Research, 219(2), 425-433.
-
Wang, J., and Li, D. (2019). Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors, 19(5), 1023-1040.
-
Wu, T. H., Yeh, J. Y., and Lee, Y. M. (2015). A particle swarm optimization approach with refinement procedure for nurse rostering problem. Computers & Operations Research, 54, 52-63.
-
Xu, S. Z. (2019). A petri net-based hybrid heuristic scheduling algorithm for flexible manufacturing system. International Journal of Simulation Modelling, 18(2), 325-334.
-
Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), 284, 65-74.
-
Yu, T. K., and Yu, T. Y. (2010). Modelling the factors that affect individuals' utilisation of online learning systems: An empirical study combining the task technology fit model with the theory of planned behaviour. British Journal of Educational Technology, 41(6), 1003-1017.
-
Zheng, Z. R., Liu, X. Y., and Gong, X. J. (2017). A simple randomized variable neighbourhood search for nurse rostering. Computers & Industrial Engineering, 110, 165-174.
-
曾智揚,建構啟發式演算法求解有軟硬限制之最佳化問題:以醫護人員排班問題為例,中原大學工業與系統工程學系碩士論文,2017。
|