题名

六標準差結合TRIZ進行製程良率提升之研究

并列篇名

Study on the process improvement by Six-Sigma and TRIZ

DOI

10.6840/cycu201600283

作者

賴偉銘

关键词

6 sigma 、TRIZ、Quality management ; 6 sigma ; TRIZ ; Quality management

期刊名称

中原大學工業與系統工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

楊康宏

内容语文

繁體中文

中文摘要

愛因斯坦說「我從不去想未來,它來得夠快。」在半導體封裝技術是隨著時代不斷的在進步,隨之而來的也是一連串挑戰。當客戶的要求不再只是高品質的產品而已(高的散熱功能、電磁波雜訊干擾、重量、環保廢棄物回收等需求也日益提高)不再只是輕、薄、短、小而已,更低的生產成本已經是半導體封裝科技業的基本要件。由於市場競爭者眾,只能以較小的毛利換取較大的數量,接受低獲利的現實,因此兼顧高品質及高獲利,不是非常困難就是不符實際。顯然未來的半導體封裝科技業將是一場殘酷的存亡賽局。 產品於生產製造中常常會發生很多生產異常狀況,這些異常狀況產生了大量的不良品,為了解決這些不良品進而提高產品良率,現今已不能再依靠過去的方式花更多成本去購買更好的機台或者是花更多的資源去提升技術能力,來解決生產產品時所產生的不良品,因為這只會造成生產成本不斷的提升,降低了整個公司的競爭力,尤其是對於已經成熟的半導體封裝業來說,更是一種沉重的負擔。 本研究針對這個議題去研究及探討,應用品質管理中六標準差(6 sigma)方法結合系統化創新(TRIZ)的概念,以DMAIC模式為架構,針對個案公司生產製程上所產生的產品異常所做的個案研究,以客戶需求為出發點及公司的生產成本為考量,於各階段中應用六標準差改善工具及統計品管手法,找出問題並進行分析,最後結合系統化創新(TRIZ)的方法,提供問題的多樣解答,以期能做到花費最少成本,而能同樣的得到最大改善流程方案。 經過個案研究探討及實際驗證,順利將生產所產生的異常降低,提高生產的良率,該生產異常由原本的3.84% 改善到0.02%, 符合半導體客戶需求,並且同時提供多樣解答,從多樣解答中選擇不須要花費高成本也能有相同改善結果。驗證了六標準差的品質手法結合TRIZ的成效,本個案亦可作為相關產業問題解決方案時的參考。

英文摘要

“I never think of the future – it comes soon enough”, said Albert Einstein. As the semiconductor packaging technology advances, a series of challenges arise. When customer requirements no longer just focus on the high quality of products (requirements on heat dissipation, electromagnetic interference, weight, environmental waste recycle, etc become increasingly higher) or the light, thin, short and compact design only, a low production cost is one of the basic elements for the semiconductor packaging industry. Since the market competition is severe, manufacturers have no other choice except accepting the fact of a low profit and using a smaller margin in exchange for a larger sale volume. Taking both high quality and profit into account simultaneously becomes very difficult, if not unrealistic. Obviously , the semiconductor packaging industry will be a brutal survival game in the future. During manufacture and production, different abnormal situations of products occur frequently, and such abnormal situations produce a large quantity of defectives. To overcome the issue of the defects and improve the yield rate, manufacturers will not rely on the past method of spending more cost to buy better machines or using more resources to upgrade technical skills anymore, because such method constantly increases the production cost and lowers the competitiveness of the whole company. Especially for the mature semiconductor packaging industry, high production cost and low competitiveness are just heavy burdens. This study focuses on the aforementioned subject and applies the 6 sigma method of quality management accompanied with the concept of systematic innovation (TRIZ) and uses the DMAIC model as the architecture to conduct case studies on product abnormalities occurred during the manufacturing process of different case companies. Customer requirement and production cost are taken into consideration, and the 6 sigma improvement tool and statistical quality control measures combined with the systematic innovation (TRIZ) method are used in different stages, and diversified solutions for problems are provided in hope of obtaining the best improvement solution and process by using the minimal cost. Through the exploration of case studies and practical verifications, the abnormality occurred in product is lowered and the yield rate is improved, and the abnormality of production is improved from the original 3.84% to 0.02%, which in compliance with the semiconductor customer requirements and provides different solutions. The same improvement result can be obtained by selection one of the solutions without spending a high cost. The effects of the 6-sigma quality method and the TRIZ are verified, and this case study may be used as a reference or a solution for related industry.

主题分类 電機資訊學院 > 工業與系統工程學系
工程學 > 工程學總論
参考文献
  1. 1. Wei-Hsin Chen , Shih-Rong Huang , Yu-Li Lin(2015) ”Performance analysis and optimum operation of a thermoelectric generator by Taguchi method” Journal of Applied Energy, Pages 44-54。
    連結:
  2. 2. Amir Azizi (2015)”Evaluation Improvement of Production Productivity Performance sing Statistical Process control,Overall Equipment Efficiency, and autonomous Maintenance”Procedia Manufacturing Pages 186 – 190。
    連結:
  3. 3. K.Srinivasana, S.Muthub, N.K.Prasadc, G.Satheesh(2015)Reduction of paint line defects in shock absorber through Six Sigma DMAIC phases “Procedia Engineering Pages 1755 – 1764。
    連結:
  4. 4. The Conflict-Solving in the Building Energy and Environment Management System Innovation”Procedia Engineering Pages 2232 – 2239
    連結:
  5. 5. Amit kumar singh, Dr.Dinesh Khanduja(2014)”defining quality management in auto sector : A six-sigma perception”Procedia materials pages 2645-2653。
    連結:
  6. 6. E.V.Gijo , Scaria,(2014)”Process improvement through Six Sigma with Beta correction: a case study of manufacturing company” The International Journal of Advanced Manufacturing Technology, Pages 717-730。
    連結:
  7. 7. Mozdgir, Mahdavi, Badeleh, Solimanpur. (2013)” Using the Taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing. Math Comput Model “Pages 137–151。
    連結:
  8. 8. Chen CJ, Hung CI.(2013)”Optimization of co-gasification process in an entrained-flow gasifier using the taguchi method “. Journal of Thermal Science and Technology Pages199–208。
    連結:
  9. 9. Chen WH, Chen CJ, Hung CI.(2013)”Taguchi approach for co-gasification optimization of torrefied biomass and coal”. Bioresour Technol. Pages 615–622。
    連結:
  10. 10. E.V.Gijo , Ashok Sarkar,(2013)”Application of Six Sigma to improve the quality of the road for wind turbine installation ” The TQM Journal, Pages.244-258。
    連結:
  11. 11. Canel , Kaya, Celik.(2012)”Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method”Optics & Laser Technology, Pages 2347–2353。
    連結:
  12. 12. Ramasamy, Yusup.(2011)”Taguchi’s parametric design approach for the selection of optimization variables in a refrigerated gas plant”Chem Eng Res Des Pages 665–675。
    連結:
  13. 13. Linfeng, D.,G. Qiang and W. Lin (2011). "An IDEF0 Design For PDM-based Die Integrated Intelligent Design System Functional Model." Systems Engineering Procedia 1” Pages 372-376。
    連結:
  14. 14. Fresner, Jantschgi ,Birkel, Bärnthaler, Krenn, (2010)” The theory of inventive problem solving (TRIZ) as option generation tool within cleaner production projects.” Journal of Cleaner Production, Pages 128-136。
    連結:
  15. 19. 羅芳琪(2014)“以六標準差結合IDEF0分析方法進行流程改善之研究-以個案的稽核流程為例”頁1-47。
    連結:
  16. 21. 林敬棋(2013)“應用創新改善準則於精實六標準差之研究-紙器深加工為例”頁1-48。
    連結:
  17. 22. 吳嘉鑫(2013)“精實六標準差應用於薄型面板製程之改善TFT-LCD製造業者之個案研究”頁1-59。
    連結:
  18. 26. 林清池(2011)“失效模式與效應分析應用於營舍防火安全之研究析”頁9-48。
    連結:
  19. 27. 楊錦洲 (2011)“服務品質”頁197-215。
    連結:
  20. 30. 邱創鈞、莊禮帆 (2009)“運用田口方法於迴轉成型塑膠發泡製程最佳化設計”頁4-11。
    連結:
  21. 31. 房燕珍(2009)“應用精實六標準差於流程改善之研究─以製造樹脂及助劑公司為例”頁1-21。
    連結:
  22. 37. 戴良州(2005)“整合全面品質管理與六標準差之品質績效評估研究”頁1-55。
    連結:
  23. 38. 李育仁(2005)“「 6-sigma」應用於TFT-LCD玻璃基板產能提昇之研究”頁1-77。
    連結:
  24. 40. 沈振江(2003)“以群組運作創造『六標準差』高績效之個案研究”頁1-105。
    連結:
  25. 43. 馮勳烈(2001)”六標準差應用於傳統樹脂製造業之品質改善研究"。頁 1-53。
    連結:
  26. 15. George Eckes (2005) “Six Sigma Execution.“ Pages 24-47。
  27. 16. 陳狄成、尤麒熊(2016)“整合QFD、TRIZ及田口法研發破壞性創新”頁1-12。
  28. 17. 黃乾怡、詹定叡(2015)“應用TRIZ理論於探針卡測試設備研發”頁1-49。
  29. 18. 彭建勳(2015)“以狩野模型、品質機能展開及全面品質”頁1-53。
  30. 20. 沙永傑(2014) “系統化創新教學授課文章“。
  31. 23. 黃柏謀(2012)“應用DEMATEL、TOPSIS 與田口方法探索工作站排程之混合式派工組合”頁4-54。
  32. 24. 洪正雄(2012)“落實六標準差之關鍵要素”頁1-104。
  33. 25. 楊錦章、楊錦洲(2011)“統計學-證與解析”頁6-345。
  34. 28. 楊捷允(2011)“建構關鍵因子選擇的多品質特性田口方法算則”頁1-79。
  35. 29. 鍾朝嵩(2010)“TQM實踐法-面品質管理”頁1-78。
  36. 32. 林文欽(2008)“影響印刷電路板錫膏印刷之因子分析”頁11-32。
  37. 33. 林騰萱(2008)“應用QFD與PFMEA於產品製程改善之研究”頁9-68。
  38. 34. 曾英富(2006)“應用六標準差的專案手法改善塗裝製程不良率”頁1-72。
  39. 35. 戴久永(2005)“全面品質管理”頁39-72。
  40. 36. 簡聰永、李永晃(2005)“全面品質管理─含六個標準差”頁354-381。
  41. 39. 張歐權(2004)“六標準差綠帶改善專案成功關鍵因素之實證研究”頁19-64
  42. 41. 呂執中(2003)「建構出具華人特色的 Six Sigma」,能力雜誌,第 568 期,頁 46-53。
  43. 42. 陳憲章(2003)「六標準差觀念」,中華六標準差應用協會。