英文摘要
|
“I never think of the future – it comes soon enough”, said Albert Einstein. As the semiconductor packaging technology advances, a series of challenges arise. When customer requirements no longer just focus on the high quality of products (requirements on heat dissipation, electromagnetic interference, weight, environmental waste recycle, etc become increasingly higher) or the light, thin, short and compact design only, a low production cost is one of the basic elements for the semiconductor packaging industry. Since the market competition is severe, manufacturers have no other choice except accepting the fact of a low profit and using a smaller margin in exchange for a larger sale volume. Taking both high quality and profit into account simultaneously becomes very difficult, if not unrealistic. Obviously , the semiconductor packaging industry will be a brutal survival game in the future.
During manufacture and production, different abnormal situations of products occur frequently, and such abnormal situations produce a large quantity of defectives. To overcome the issue of the defects and improve the yield rate, manufacturers will not rely on the past method of spending more cost to buy better machines or using more resources to upgrade technical skills anymore, because such method constantly increases the production cost and lowers the competitiveness of the whole company. Especially for the mature semiconductor packaging industry, high production cost and low competitiveness are just heavy burdens.
This study focuses on the aforementioned subject and applies the 6 sigma method of quality management accompanied with the concept of systematic innovation (TRIZ) and uses the DMAIC model as the architecture to conduct case studies on product abnormalities occurred during the manufacturing process of different case companies. Customer requirement and production cost are taken into consideration, and the 6 sigma improvement tool and statistical quality control measures combined with the systematic innovation (TRIZ) method are used in different stages, and diversified solutions for problems are provided in hope of obtaining the best improvement solution and process by using the minimal cost.
Through the exploration of case studies and practical verifications, the abnormality occurred in product is lowered and the yield rate is improved, and the abnormality of production is improved from the original 3.84% to 0.02%, which in compliance with the semiconductor customer requirements and provides different solutions. The same improvement result can be obtained by selection one of the solutions without spending a high cost. The effects of the 6-sigma quality method and the TRIZ are verified, and this case study may be used as a reference or a solution for related industry.
|
参考文献
|
-
1. Wei-Hsin Chen , Shih-Rong Huang , Yu-Li Lin(2015) ”Performance analysis and optimum operation of a thermoelectric generator by Taguchi method” Journal of Applied Energy, Pages 44-54。
連結:
-
2. Amir Azizi (2015)”Evaluation Improvement of Production Productivity Performance sing Statistical Process control,Overall Equipment Efficiency, and autonomous Maintenance”Procedia Manufacturing Pages 186 – 190。
連結:
-
3. K.Srinivasana, S.Muthub, N.K.Prasadc, G.Satheesh(2015)Reduction of paint line defects in shock absorber through Six Sigma DMAIC phases “Procedia Engineering Pages 1755 – 1764。
連結:
-
4. The Conflict-Solving in the Building Energy and Environment Management System Innovation”Procedia Engineering Pages 2232 – 2239
連結:
-
5. Amit kumar singh, Dr.Dinesh Khanduja(2014)”defining quality management in auto sector : A six-sigma perception”Procedia materials pages 2645-2653。
連結:
-
6. E.V.Gijo , Scaria,(2014)”Process improvement through Six Sigma with Beta correction: a case study of manufacturing company” The International Journal of Advanced Manufacturing Technology, Pages 717-730。
連結:
-
7. Mozdgir, Mahdavi, Badeleh, Solimanpur. (2013)” Using the Taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing. Math Comput Model “Pages 137–151。
連結:
-
8. Chen CJ, Hung CI.(2013)”Optimization of co-gasification process in an entrained-flow gasifier using the taguchi method “. Journal of Thermal Science and Technology Pages199–208。
連結:
-
9. Chen WH, Chen CJ, Hung CI.(2013)”Taguchi approach for co-gasification optimization of torrefied biomass and coal”. Bioresour Technol. Pages 615–622。
連結:
-
10. E.V.Gijo , Ashok Sarkar,(2013)”Application of Six Sigma to improve the quality of the road for wind turbine installation ” The TQM Journal, Pages.244-258。
連結:
-
11. Canel , Kaya, Celik.(2012)”Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method”Optics & Laser Technology, Pages 2347–2353。
連結:
-
12. Ramasamy, Yusup.(2011)”Taguchi’s parametric design approach for the selection of optimization variables in a refrigerated gas plant”Chem Eng Res Des Pages 665–675。
連結:
-
13. Linfeng, D.,G. Qiang and W. Lin (2011). "An IDEF0 Design For PDM-based Die Integrated Intelligent Design System Functional Model." Systems Engineering Procedia 1” Pages 372-376。
連結:
-
14. Fresner, Jantschgi ,Birkel, Bärnthaler, Krenn, (2010)” The theory of inventive problem solving (TRIZ) as option generation tool within cleaner production projects.” Journal of Cleaner Production, Pages 128-136。
連結:
-
19. 羅芳琪(2014)“以六標準差結合IDEF0分析方法進行流程改善之研究-以個案的稽核流程為例”頁1-47。
連結:
-
21. 林敬棋(2013)“應用創新改善準則於精實六標準差之研究-紙器深加工為例”頁1-48。
連結:
-
22. 吳嘉鑫(2013)“精實六標準差應用於薄型面板製程之改善TFT-LCD製造業者之個案研究”頁1-59。
連結:
-
26. 林清池(2011)“失效模式與效應分析應用於營舍防火安全之研究析”頁9-48。
連結:
-
27. 楊錦洲 (2011)“服務品質”頁197-215。
連結:
-
30. 邱創鈞、莊禮帆 (2009)“運用田口方法於迴轉成型塑膠發泡製程最佳化設計”頁4-11。
連結:
-
31. 房燕珍(2009)“應用精實六標準差於流程改善之研究─以製造樹脂及助劑公司為例”頁1-21。
連結:
-
37. 戴良州(2005)“整合全面品質管理與六標準差之品質績效評估研究”頁1-55。
連結:
-
38. 李育仁(2005)“「 6-sigma」應用於TFT-LCD玻璃基板產能提昇之研究”頁1-77。
連結:
-
40. 沈振江(2003)“以群組運作創造『六標準差』高績效之個案研究”頁1-105。
連結:
-
43. 馮勳烈(2001)”六標準差應用於傳統樹脂製造業之品質改善研究"。頁 1-53。
連結:
-
15. George Eckes (2005) “Six Sigma Execution.“ Pages 24-47。
-
16. 陳狄成、尤麒熊(2016)“整合QFD、TRIZ及田口法研發破壞性創新”頁1-12。
-
17. 黃乾怡、詹定叡(2015)“應用TRIZ理論於探針卡測試設備研發”頁1-49。
-
18. 彭建勳(2015)“以狩野模型、品質機能展開及全面品質”頁1-53。
-
20. 沙永傑(2014) “系統化創新教學授課文章“。
-
23. 黃柏謀(2012)“應用DEMATEL、TOPSIS 與田口方法探索工作站排程之混合式派工組合”頁4-54。
-
24. 洪正雄(2012)“落實六標準差之關鍵要素”頁1-104。
-
25. 楊錦章、楊錦洲(2011)“統計學-證與解析”頁6-345。
-
28. 楊捷允(2011)“建構關鍵因子選擇的多品質特性田口方法算則”頁1-79。
-
29. 鍾朝嵩(2010)“TQM實踐法-面品質管理”頁1-78。
-
32. 林文欽(2008)“影響印刷電路板錫膏印刷之因子分析”頁11-32。
-
33. 林騰萱(2008)“應用QFD與PFMEA於產品製程改善之研究”頁9-68。
-
34. 曾英富(2006)“應用六標準差的專案手法改善塗裝製程不良率”頁1-72。
-
35. 戴久永(2005)“全面品質管理”頁39-72。
-
36. 簡聰永、李永晃(2005)“全面品質管理─含六個標準差”頁354-381。
-
39. 張歐權(2004)“六標準差綠帶改善專案成功關鍵因素之實證研究”頁19-64
-
41. 呂執中(2003)「建構出具華人特色的 Six Sigma」,能力雜誌,第 568 期,頁 46-53。
-
42. 陳憲章(2003)「六標準差觀念」,中華六標準差應用協會。
|