题名

以實驗設計與反應曲面法對IC封裝銲線良率之研究與實證

并列篇名

The Study of Improving the Yield of Wire Bonding Process for IC Packaging by Using the Design of Experiment and Response Surface Methodology

DOI

10.6840/cycu201600263

作者

崔贏友

关键词

實驗設計 ; 田口方法 ; 反應曲面法 ; 中央合成設計。 ; Design of Experiment ; Taguchi Method ; Response Surface Methodology ; Central Composite Design.

期刊名称

中原大學工業與系統工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

周永燦

内容语文

繁體中文

中文摘要

在台灣半導體封裝測試產業的急速發展下,此產業已漸漸轉換成低毛利時代,提高生產效率及降低生產成本為目前首要的課題,封裝產業中又以銲線站為降低成本的主要瓶頸。若能直接改善銲線站的生產成本,對公司的成本結省將會有顯著的改善。本研究是以國內封裝產業A公司為個案,探討在銲線製程中影響產能最主要之異常,使用實驗設計(Design of experiment, DOE)中的田口方法找出顯著因子,再利用反應曲面法中的中央合成設計,找出最佳化參數,最後改善此問題,並且快速的解決問題。 分析個案公司中,主要瓶頸銲線站,經收集及分析數據之後,發現造成機台作業性不佳的原因,最主要為銀球變形,故本研究將會提出DOE來改善此一銀球變形之異常,期望將不良率降低,使產品之良率能夠達到客戶的標準,並且減少作業成本及提升品質。本研究將依經驗,先提出最有可能改善之十個相關因子,再依實驗設計,找出最顯著的三個因子,由變異數分析得知,銲線機之參數設定,其中銲臂壓力(Bond force)、截尾線速度(Tail cut speed)、放電電流(Spark current)等三個計算之P值均<0.05,對反應值具有顯著的差異,故將選擇此三個因子為主要之關鍵參數。本研究使用田口方法,找出三個顯著因子,故再針對此三個因子,應用反應曲面法中的中央合成設計,找出最佳化參數,並且驗證最佳參數,驗證結果均達到客戶製程能力(Cpk)之標準。 本研究利用實驗設計找出的最佳參數,成功的導入銲線站,並且追縱改善結果,產品良率從95.79%提升至99.58%,減少了銀球變形的問題,大大提升了產品的品質,改善了此產品因為作業性不佳所造成之浪費,成功的為公司結省成本,使公司更具競爭力。

英文摘要

There has been a lower gross era for Taiwanese assembly and testing industry. So how to enhance the production efficiency and lower production cost are big issues to this industry. The major bottleneck of IC packaging is how to reduce the cost in the wire bonding process. If a company can improve the cost efficiency of wire bonding, there will improve the cost saving. This research collected data from Case Company A. the main problem to Case Company A is the abnormal shape of silver ball when operating. Thus, Taguchi Method of the Design of Experiment (DOE) are employed to explore the influential factors, and then find out the optimal parameters by response surface methodology (RSM) to improve the problem of silver balls. Three main influential factors are discovered, including bond force, tail cut speed, and spark current. Then, the Central Composite Design of RSM is used to explore the optimal parameters. Research findings show that the yield shifts from 95.79% to 99.58% as wire bonding process improved. This research provide an example to assembly and testing industry in improving the production efficiency and cost saving.

主题分类 電機資訊學院 > 工業與系統工程學系
工程學 > 工程學總論
参考文献
  1. 7.方子睿,「以反應曲面法搭配基因演算法進行堆疊晶QFN構裝體疲勞壽命之最
    連結:
  2. 8.蘇朝墩,「專訪世界品質大師田口玄一博士」,品質月刊,第四十卷,第三
    連結:
  3. 期,30-32頁,2004。
    連結:
  4. 10.戴金琪,「以反應曲面方法改善銅導線晶圓封裝之銲線製程問題」,元智大學
    連結:
  5. Statistics for Experimenters: An Introduction to Design,
    連結:
  6. Data Analysis, and Model Building, 2nded, John Wiley and
    連結:
  7. of parameters for depth resolution galvanized steel by
    連結:
  8. (2013). Low cost silver alloy wire bonding with
    連結:
  9. excellent reliability performance, 21(3), 1569-1573.
    連結:
  10. Robust optimization in simulation: Taguchi and Response
    連結:
  11. 5.Duan, X. H., Srinivasakannan, C., Peng, J. H., Zhang, L.
    連結:
  12. B., and Zhang, Z. Y. (2011). Preparation of activated
    連結:
  13. Optimization using response surface methodology, Fuel
    連結:
  14. Science and Engineering, 34, 175-185.
    連結:
  15. (2014). Integrating the Taguchi Method and Response
    連結:
  16. the injection Molding Applied Mathematics & Information
    連結:
  17. gas tungsten are welding process by response surface
    連結:
  18. obstacles, and future of six sigma approach, Tech
    連結:
  19. 11.Lee, H. H. (2008). Taguchi Methods : Principles and
    連結:
  20. alloy wire wire bonding, 38(3), 1163-1168.
    連結:
  21. Optimization of parameters by response surface
    連結:
  22. methodology (RSM), Separation and Purification
    連結:
  23. Mamat, O., and Ramesh, S. (2013). Carbothermal
    連結:
  24. optimization using designed experiment, 87(12), 124-131.
    連結:
  25. assay optimized by Taguchi experimental design method
    連結:
  26. for venous thromboembolism investigation, Molecular and
    連結:
  27. systems with applications, 34, 2693-2703.
    連結:
  28. 19.Su, C. T., Lin, C. M., and Chang, C. A. (2012).
    連結:
  29. neural networks and genetic algorithms, Microelectronics
    連結:
  30. wire bonding process for IC assembly using Taguchi
    連結:
  31. 22.Wang, J. W. (2009). Experimental design methods for
    連結:
  32. fermentative hydrogen production: A review,
    連結:
  33. International journal of hydrogen energy, 34, 235-244.
    連結:
  34. electro dialysis with bipolar membranes by using
    連結:
  35. response surface methodology, Journal of Membrane
    連結:
  36. optimization approach for structural design optimization
    連結:
  37. S. Y. (2011). Reliability-based topology optimization
    連結:
  38. Finite Elements in Analysis and Design, 47, 843-849.
    連結:
  39. 參考文獻
  40. 中文部份:
  41. 1.經濟部技術處 產業技術知識服務計畫(ITIS) "2015半導體產業年鑑 2015。
  42. 2.Douglas C. Montgomery 原著,黎正中、陳源樹譯,「實驗設計與分
  43. 析」,高立圖書有限公司出版,2010。
  44. 3.林李旺,「突破品質水準-實驗設計與田口方法之實務應用」,全華圖書股份
  45. 有限公司出版,2014。
  46. 4.劉克琪,「實驗設計與田口式品質工程」,華泰書局出版,1994。
  47. 5.紀博竣,「結合田口實驗法與反應曲面法於射出成型參數最適化之研究」,建
  48. 國科技大學機械工程系碩士學位論文,2013。
  49. 6.盧柏任,「應用田口法與反應曲面法於SMT印刷製程」,龍華科技大學機械工程
  50. 系碩士學位論文,2014。
  51. 佳化設計」,國立成功大學碩士學位論文,2009。
  52. 9.田口玄一著,陳耀茂譯,「田口統計解析法」,五南圖書股份有限公司出版,
  53. 2003。
  54. 工業工程與管理系碩士論文,2003。
  55. 11.曾珞萍,「以反應曲面法尋找多目標模擬模式之最佳解-以半導體封裝廠印字
  56. 為例」,成功大學製造工程系碩士論文,2001。
  57. 12.林秀雄,「田口方法與品質工程」,新知企業管理顧問有限公司,1997。
  58. 13.李輝煌,「田口方法-品質設計的原理與實務」,高利圖書有限公司,2011。
  59. 14.陳文化,「品質管理理論與實務」,士大企管顧問股份有限公司出版發行,
  60. 1994。
  61. 英文部分:
  62. 1.Box, G. E. P., Hunter, J. S., and Hunter, W. G. (2010).
  63. Sons., New York.
  64. 2.Canel, T., Demir, P., Kacar, E., Genc Oztopark, B.,
  65. Akman, E., Gunes, M., and Demir, A. (2013). Optimization
  66. LIBS technique. Optics & Laser Technology, 54(9), 257-264.
  67. 3.Cheng, C. H., Hsiao, H. L., Chu, S. I., and Shieh, Y. Y.
  68. 4.Dellino, G., Kleijnen, J. P. C., and Meloni, C. (2010).
  69. surface Methodology, International Journal of Production
  70. Economics, 125(1), 52-59.
  71. carbon from Jatropha hull with microwave heating:
  72. Processing Technology, 92(3), 394-400.
  73. 6.Harrington, E. E. (1965). The Desirability Function,
  74. Industrial Quality Control, 21(10), 494-498.
  75. 7.Hsiang, S. H., and Lin, Y. W. (2009). Optimization of the
  76. extrusion process for magnesium alloy sheets using the
  77. fuzzy based Taguchi method, The Arabian Journal for
  78. 8.Jou, Y. T., Lin, W. T., Lee, W. C., and Yeh, T. M.
  79. Surface Methodology for Process Parameter Optimization of
  80. Sciences, 8(3), 1277-1285.
  81. 9.Kiaee, N., and Aghaie-Khafri, M. (2014). Optimization of
  82. methodology, Materials and Design, 54, 25-31.
  83. 10.Kwak, Y. H., and Anbari, F. T., (2006). Benefits,
  84. novation, 26(5), 708-715.
  85. Practices of Quality Design, Gau Lih Book Co. Ltd.,
  86. Taipei, Taiwan.
  87. 12.Liao, J. J., Liang,Y. H., and Li, W. W. (2012). Silver
  88. 13.Lin, T. Y., Pecht, M. G., Das, D. T., Pan, J. S., and
  89. Zhu, W. H. (2005). The evaluation of copper migration
  90. during the die attach curing and second wire bonding
  91. process, 28(2), 337-344.
  92. 14.Mirazimi, S. M. J., Rashchi, F., and Saba, M. (2013).
  93. Vanadium removal from roasted LD converter slag:
  94. Technology, 116(15), 175-183.
  95. 15.Mustapha, M., Othman, E. A., Norsal, K., Mustapha, F.,
  96. metrication process of mechanically milled silica sand
  97. using Taguchi’s method. Ceramics International, 39(6),
  98. 6119-6130.
  99. 16.Myers, R. H., Montgomery, D. C., and Anderson, C. M.
  100. (2008). Response Surface Methodology: Process and product
  101. 17.Souza, H. J. C. D., Moyses, C. B., Pontes, F. J.,
  102. Duarte, R. N., Silva, C. E. S., Alberto, F. L.,
  103. Ferreira, U. R., and Silva, M. B. (2011). Molecular
  104. Cellular Probes, 25, 231-237.
  105. 18.Su, C. T., and Chou, C. J. (2008). A systematic
  106. methodology for the creation of six sigma projects: A
  107. case study of semiconductor foundry, Journal of expert
  108. Optimization of the instability property for flexible
  109. display by an integrated approach using Taguchi methods,
  110. Reliability, 52(7), 1492-1500.
  111. 20.Su, C. T., and Yen, C. J. (2011). Optimization of the Cu
  112. methods, 51(1), 53-59.
  113. 21.Tsai, T. N. (2014). A hybrid intelligent approach for
  114. optimizing the fine-pitch copper wire bonding process
  115. with multiple quality characteristics in IC assembly, 25
  116. (1), 177-192.
  117. 23.Wang, Y. H., and Huang, C. N. (2010). Optimization of
  118. Science, 362, 249-254.
  119. 24.Yildiz, A. R. (2012). A new hybrid particle swarm
  120. in automotive industry, Journal of Automobile
  121. Engineering, 226, 1340-1351.
  122. 25.Yoo, K. S., Eom, Y. S., Park, J. Y., Im, M. G., and Han,
  123. using successive standard response surface method,