题名

研究羥基與醯胺官能基之分子結構對於抵抗血漿蛋白質吸附與人體血小板貼附的影響

并列篇名

The molecular structure effects of combined hydroxyl and amide group on the resistance of plasma protein adsorption and human platelet adhesion

DOI

10.6840/cycu201600725

作者

楊承臻

关键词

水膠 ; N-(2-羥乙基)丙烯醯胺 ; N-(2-羥丙基)甲基丙烯醯胺 ; 血漿蛋白質吸附 ; 血小板貼附 ; Hydrogel ; N-(2-Hyroxyethyl)acrylamide ; N-(2-Hydroxypropyl) methacrylamide ; plasma protein adsorption ; platelet adhesion

期刊名称

中原大學化學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

張雍

内容语文

繁體中文

中文摘要

本研究目的為探討羥基和醯胺官能基之分子排列結構對於水膠於抵抗血漿蛋白質吸附與血球貼附之影響。本研究之分子結構設計分為三種類型單體系統,第一類型結構為僅具有羥基官能基單體: (1)甲基丙烯酸羥乙酯 (2-Hdroxyethyl methacrylate, HEMA)與其結構相似物(2)丙烯酸羥乙酯 (2-Hydroxyethyl acrylate, HEA); 第二類型結構為僅具有醯胺官能基單體: (3)丙烯醯胺(Acrylamide, AAm)與其結構衍生物(4)甲基丙烯醯胺(Methacrylamide, MAA); 第三類型結構為同時具有羥基和醯胺官能基單體: (5) N-(2-羥丙基)甲基丙烯醯胺(N-(2-Hydroxypropyl) methacrylamide, HPMA)與(6) N-(2-羥乙基)丙烯醯胺(N-(2-Hyroxyethyl)acrylamide, HEAA)。在製備三種不同類型水膠系統後,比較其不同親水性官能基結構組合對於抵抗血漿蛋白質、血小板和白血球貼附現象的影響。 本研究以微分掃描熱量計(Differential scanning calorimetry, DSC)分別鑑定三種不同類型水膠系統於微觀尺度下之結合水結構型態差異。實驗結果發現醯胺羥基類型之水膠HPMA和HEAA有最佳的水合能力和含量較高的不凍水(non-freezable bound water)。使用酵素連結免疫吸附法分析蛋白質於水膠表面之吸附,分析結果顯示HPMA和HEAA水膠展現優異的抗血漿蛋白質吸附特性。由人體血球貼附於HPMA水膠表面之實驗觀察,結果顯示相當低的血將蛋白吸附進而防止血小板激活與白血球貼附的現象發生。

英文摘要

The target of this study focuses on the molecular structure effects of hydroxyl and amide groups on the resistance of protein adsorption and blood-cells adhesion. Three types of hydrogel monomer structures were prepared with different hydroxyl and amide functional groups, the first type of monomer structure contains only one hydrophilic hydroxyl group: (1) 2-Hydroxyethyl methacrylate (HEMA) and (2) 2-Hydroxyethyl acrylate (HEA); the second type of monomer structure contains only one hydrophilic amide group: (3) Acrylamide (AAm) and (4) Methacrylamide (MAA); the third type of monomer structure contains both hydroxyl and amide group: (5) N-(2-Hydroxypropyl) methacrylamide (HPMA) and (6) N-(2-Hyroxyethyl)acrylamide (HEAA). After the preparation of three types of monomers into hydrogel systems, the resistance of protein adsorption, platelet adhesion, and leukocyte attachment was evaluated to illustrate the effects of molecular structures combined from different hydrophilic functional groups. In this study, differential scanning calorimetry (DSC) was used to determine the differences of bound water structures in micro scale from three types of hydrogel systems. It was found that HPMA and HEAA hydrogels have best hydration capability and higher amounts of non-freezable bound water. From the analysis of protein adsorption on the prepared hydrogels by enzyme-linked immunosorbent assay (ELISA), the results showed that HPMA and HEAA hydrogels perform excellent resistance of plasma protein adsorption. From the observation of human blood cells on HPMA hydrogels, the results indicated that extremely low amounts of fibrinogen adsorption resulting the resistance of platelet activation and leukocyte attachment.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. [1] Lau, K.H.A., C. Ren, T.S. Sileika, S.H. Park, I. Szleifer and P.B. Messersmith, Surface-grafted polysarcosine as a peptoid antifouling polymer brush. Langmuir, 2012. 28(46): p. 16099-16107.
    連結:
  2. [2] Brash, J.L. and T.A. Horbett, Proteins at Interfaces, Copyright, ACS Symposium Series, Foreword. Journal, 1987. 343(Issue): p. i-iv.
    連結:
  3. [3] Horbett, T.A. and J.L. Brash, Proteins at Interfaces II, Copyright, 1995 Advisory Board, Foreword. Journal, 1995. 602(Issue): p. i-iv.
    連結:
  4. [4] Ratner, B.D., A.S. Hoffman, F.J. Schoen and J.E. Lemons, Biomaterials Science. Journal, 2013. p.
    連結:
  5. [5] Jones, R.G., E.S. Wilks, W.V. Metanomski, J. Kahovec, M. Hess, R. Stepto and T. Kitayama, Compendium of Polymer Terminology and Nomenclature: IUPAC Recommendations, 2008. Journal, 2009. p.
    連結:
  6. [6] Refojo, M. and H. Yasuda, Hydrogels from 2‐hydroxyethyl methacrylate and propylene glycol monoacrylate. Journal of Applied Polymer Science, 1965. 9(7): p. 2425-2435.
    連結:
  7. [8] Hamidi, M., A. Azadi and P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 2008. 60(15): p. 1638-1649.
    連結:
  8. [9] Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
    連結:
  9. [10] Yang, F., C.G. Williams, D.-A. Wang, H. Lee, P.N. Manson and J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials, 2005. 26(30): p. 5991-5998.
    連結:
  10. [11] Ju, H., B.D. Mccloskey, A.C. Sagle, V.A. Kusuma and B.D. Freeman, Preparation and characterization of crosslinked poly (ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. Journal of Membrane Science, 2009. 330(1): p. 180-188.
    連結:
  11. [13] Kaelble, D.H. and J. Moacanin, Structure and Properties of BiopolymersA surface energy analysis of bioadhesion. Polymer, 1977. 18(5): p. 475-482.
    連結:
  12. [14] Lee, R.G. and S.W. Kim, Adsorption of proteins onto hydrophobic polymer surfaces: adsorption isotherms and kinetics. Journal of biomedical materials research, 1974. 8(5): p. 251-259.
    連結:
  13. [15] Prime, K.L. and G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society, 1993. 115(23): p. 10714-10721.
    連結:
  14. [16] Vogler, E.A., Structure and reactivity of water at biomaterial surfaces. Advances in colloid and interface science, 1998. 74(1): p. 69-117.
    連結:
  15. [17] Morisaku, T., J. Watanabe, T. Konno, M. Takai and K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer, 2008. 49(21): p. 4652-4657.
    連結:
  16. [18] Chen, S., L. Li, C. Zhao and J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
    連結:
  17. [19] Higuchi, A. and T. Iijima, D.s.c. investigation of the states of water in poly(vinyl alcohol-co-itaconic acid) membranes. Polymer, 1985. 26(12): p. 1833-1837.
    連結:
  18. [20] Higuchi, A. and T. Iijima, D.s.c. investigation of the states of water in poly(vinyl alcohol) membranes. Polymer, 1985. 26(8): p. 1207-1211.
    連結:
  19. [21] Tanaka, M. and A. Mochizuki, Effect of water structure on blood compatibility—thermal analysis of water in poly (meth) acrylate. Journal of Biomedical Materials Research Part A, 2004. 68(4): p. 684-695.
    連結:
  20. [23] Liu, L., W. Li and Q. Liu, Recent development of antifouling polymers: Structure, evaluation, and biomedical applications in nano/micro-structures. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, 2014. 6(6): p. 599-614.
    連結:
  21. [24] Vogt, R.V., D.L. Phillips, L. Omar Henderson, W. Whitfield and F.W. Spierto, Quantitative differences among various proteins as blocking agents for ELISA microtiter plates. Journal of Immunological Methods, 1987. 101(1): p. 43-50.
    連結:
  22. [25] Van Beek, M., L. Jones and H. Sheardown, Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials, 2008. 29(7): p. 780-789.
    連結:
  23. [26] Vert, M. and D. Domurado, Poly (ethylene glycol): Protein-repulsive or albumin-compatible? Journal of Biomaterials Science, Polymer Edition, 2000. 11(12): p. 1307-1317.
    連結:
  24. [27] Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama and G.M. Whitesides, A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
    連結:
  25. [28] Holmlin, R.E., X. Chen, R.G. Chapman, S. Takayama and G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
    連結:
  26. [29] Liu, Q., A. Singh, R. Lalani and L. Liu, Ultralow Fouling Polyacrylamide on Gold Surfaces via Surface-Initiated Atom Transfer Radical Polymerization. Biomacromolecules, 2012. 13(4): p. 1086-1092.
    連結:
  27. [30] Chang, Y., C.-Y. Ko, Y.-J. Shih, D. Quémener, A. Deratani, T.-C. Wei, D.-M. Wang and J.-Y. Lai, Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science, 2009. 345(1–2): p. 160-169.
    連結:
  28. [31] Ishihara, K., T. Ueda and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J, 1990. 22(5): p. 355-360.
    連結:
  29. [32] Ishihara, K., N.P. Ziats, B.P. Tierney, N. Nakabayashi and J.M. Anderson, Protein adsorption from human plasma is reduced on phospholipid polymers. Journal of biomedical materials research, 1991. 25(11): p. 1397-1407.
    連結:
  30. [34] Zhang, Z., T. Chao, S. Chen and S. Jiang, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
    連結:
  31. [35] Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater, 2010. 22(9): p. 920-932.
    連結:
  32. [36] Chang, Y., S.-C. Liao, A. Higuchi, R.-C. Ruaan, C.-W. Chu and W.-Y. Chen, A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
    連結:
  33. [37] Ratner, B.D., P.K. Weathersby, A.S. Hoffman, M.A. Kelly and L.H. Scharpen, Radiation‐grafted hydrogels for biomaterial applications as studied by the ESCA technique. Journal of Applied Polymer Science, 1978. 22(3): p. 643-664.
    連結:
  34. [38] Chen, Q., D. Zhang, G. Somorjai and C.R. Bertozzi, Probing the surface structural rearrangement of hydrogels by sum-frequency generation spectroscopy. Journal of the American Chemical Society, 1999. 121(2): p. 446-447.
    連結:
  35. [39] Wichterle, O. and D. Lím, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118.
    連結:
  36. [40] Zhao, C., Q. Chen, K. Patel, L. Li, X. Li, Q. Wang, G. Zhang and J. Zheng, Synthesis and characterization of pH-sensitive poly (N-2-hydroxyethyl acrylamide)–acrylic acid (poly (HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter, 2012. 8(30): p. 7848-7857.
    連結:
  37. [41] Yang, W., T. Bai, L.R. Carr, A.J. Keefe, J. Xu, H. Xue, C.A. Irvin, S. Chen, J. Wang and S. Jiang, The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012. 33(32): p. 7945-7951.
    連結:
  38. [42] Farrugia, A., Albumin Usage in Clinical Medicine: Tradition or Therapeutic? Transfusion Medicine Reviews, 2010. 24(1): p. 53-63.
    連結:
  39. [43] Horbett, T.A., Chapter 13 Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovascular Pathology, 1993. 2(3 SUPPL.): p. 137-148.
    連結:
  40. [44] Hunter, R., Behaviour of colloidal dispersions. Foundations of colloid science, 1989. 1(p. 72-73.
    連結:
  41. [45] Roth, C.M. and A.M. Lenhoff, Electrostatic and van der Waals contributions to protein adsorption: computation of equilibrium constants. Langmuir, 1993. 9(4): p. 962-972.
    連結:
  42. [46] Esche, C., C. Stellato and L.A. Beck, Chemokines: key players in innate and adaptive immunity. Journal of Investigative Dermatology, 2005. 125(4): p. 615-628.
    連結:
  43. [47] Ratner, B.D. and S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng., 2004. 6(p. 41-75.
    連結:
  44. [48] Wilson, C.J., R.E. Clegg, D.I. Leavesley and M.J. Pearcy, Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue engineering, 2005. 11(1-2): p. 1-18.
    連結:
  45. [49] Anderson, J.M., Biological responses to materials. Annual Review of Materials Research, 2001. 31(1): p. 81-110.
    連結:
  46. [50] Gretzer, C., L. Emanuelsson, E. Liljensten and P. Thomsen, The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. Journal of Biomaterials Science, Polymer Edition, 2006. 17(6): p. 669-687.
    連結:
  47. [51] Luttikhuizen, D.T., M.C. Harmsen and M.J.V. Luyn, Cellular and molecular dynamics in the foreign body reaction. Tissue engineering, 2006. 12(7): p. 1955-1970.
    連結:
  48. [52] Nuhn, L., C. SchüLl, H. Frey and R. Zentel, Combining Ring-Opening Multibranching and RAFT Polymerization: Multifunctional Linear–Hyperbranched Block Copolymers via Hyperbranched Macro-Chain-Transfer Agents. Macromolecules, 2013. 46(8): p. 2892-2904.
    連結:
  49. [54] Cho, H.K., H.-J. Cho, S. Lone, D.-D. Kim, J.H. Yeum and I.W. Cheong, Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy. Journal of Materials Chemistry, 2011. 21(39): p. 15486-15493.
    連結:
  50. [55] Vargün, E. and A. Usanmaz, Polymerization of 2‐hydroxyethyl acrylate in bulk and solution by chemical initiator and by ATRP method. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(17): p. 3957-3965.
    連結:
  51. [56] Liu, Z., G. Lu, Y. Li, Y. Li and X. Huang, Click synthesis of graphene/poly(N-(2-hydroxypropyl) methacrylamide) nanocomposite via "grafting-onto" strategy at ambient temperature. RSC Adv., 2014. 4(105): p. 60920-60928.
    連結:
  52. [57] Yang, J., M. Zhang, H. Chen, Y. Chang, Z. Chen and J. Zheng, Probing the Structural Dependence of Carbon Space Lengths of Poly (N-hydroxyalkyl acrylamide)-Based Brushes on Antifouling Performance. Biomacromolecules, 2014. 15(8): p. 2982-2991.
    連結:
  53. [58] Zhao, C., L. Li, Q. Wang, Q. Yu and J. Zheng, Effect of film thickness on the antifouling performance of poly (hydroxy-functional methacrylates) grafted surfaces. Langmuir, 2011. 27(8): p. 4906-4913.
    連結:
  54. [59] Zhao, C., X. Li, L. Li, G. Cheng, X. Gong and J. Zheng, Dual functionality of antimicrobial and antifouling of poly (N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir, 2013. 29(5): p. 1517-1524.
    連結:
  55. [60] Wu, J., W. Lin, Z. Wang, S. Chen and Y. Chang, Investigation of the hydration of nonfouling material poly (sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir, 2012. 28(19): p. 7436-7441.
    連結:
  56. [61] Lord, M.S., M.H. Stenzel, A. Simmons and B.K. Milthorpe, The effect of charged groups on protein interactions with poly(HEMA) hydrogels. Biomaterials, 2006. 27(4): p. 567-575.
    連結:
  57. [62] Anderson, J.M., A. Rodriguez and D.T. Chang, Foreign body reaction to biomaterials. Journal, 2008. 20(2): p. 86-100.
    連結:
  58. [63] Zhang, Z., M. Zhang, S. Chen, T.A. Horbett, B.D. Ratner and S. Jiang, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291.
    連結:
  59. [64] Tsai, W.B., J.M. Grunkemeier and T.A. Horbett, Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. Journal of biomedical materials research, 1999. 44(2): p. 130-139.
    連結:
  60. [65] Tsai, W.B., J.M. Grunkemeier, C.D. Mcfarland and T.A. Horbett, Platelet adhesion to polystyrene‐based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand's factor. Journal of biomedical materials research, 2002. 60(3): p. 348-359.
    連結:
  61. [66] Tsai, W.B., J.M. Grunkemeier and T.A. Horbett, Variations in the ability of adsorbed fibrinogen to mediate platelet adhesion to polystyrene-based materials: A multivariate statistical analysis of antibody binding to the platelet binding sites of fibrinogen. J. Biomed. Mater. Res. Part A, 2003. 67(4): p. 1255-1268.
    連結:
  62. [67] Li, N., H. Hu, M. Lindqvist, E. Wikström-Jonsson, A.H. Goodall and P. Hjemdahl, Platelet-leukocyte cross talk in whole blood. Arteriosclerosis, thrombosis, and vascular biology, 2000. 20(12): p. 2702-2708.
    連結:
  63. [68] Gray, J.J., The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol., 2004. 14(1): p. 110-115.
    連結:
  64. [69] Gahmberg, C.G., Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Current Opinion in Cell Biology, 1997. 9(5): p. 643-650.
    連結:
  65. [7] Wen, Q. and Y. Dong, Gels Handbook, Volume 1: Fundamentals of Hydrogels. Journal, 2016. p.
  66. [12] Lendlein, A. and A. Sisson, Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications. Journal, 2011. p.
  67. [22] Wolfe, J., G. Bryant and K.L. Koster, What is' unfreezable water', how unfreezable is it and how much is there? CryoLetters, 2002. 23(3): p. 157-166.
  68. [33] Ishihara, K., H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki and N. Nakabayashi, Why do phospholipid polymers reduce protein adsorption? Journal of biomedical materials research, 1998. 39(2): p. 323-330.
  69. [53] Gupta, M.K. and R. Bansil, Laser Raman spectroscopy of polyacrylamide. Journal of Polymer Science: Polymer Physics Edition, 1981. 19(2): p. 353-360.