题名

開發奈米級聚苯胺複合材料應用於水體抑菌作用之研究

并列篇名

Application of Polyaniline Composite Filter in Water Antibacteria

DOI

10.6840/cycu201700756

作者

葉子豪

关键词

聚苯胺 ; 複合式濾材 ; 抗菌率 ; polyaniline ; composite filter ; antibacterial rate

期刊名称

中原大學環境工程研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

王雅玢;游勝傑

内容语文

繁體中文

中文摘要

根據資料指出,台灣水產養殖業淡水用水量每年平均為 6,800 萬噸,顯示養殖水產業需要之大量淡水。而由於台灣地形因素導致水資源長期匱乏,淡水資源取得並不容易,因此如何將水資源重覆運用已變成一重要課題。對台灣而言,高密度養殖漁業對水的潔淨度有很高的要求,大多數的養殖場都具有十分良好的水處理回收系統,但其設備系統造價極為昂貴,加上因此研發便宜的處理設備是近年的熱門研究項目。 聚苯胺結構特性之多樣涵蓋物理、化學、磁性、電性等多種方面應用價值,近年更有許多研究報告指出聚苯胺能有效抑制細菌、黴菌及真菌。而本實驗利用十二烷基苯磺酸及二氧化鈦摻雜聚苯胺,主要探討應用於用水系統之抗菌效果,研究包括對聚苯胺複合材料及複合濾材之特徵鑑定, 並將複合式材料及濾材應用於瓶杯抗菌實驗及實際水樣抗菌中,記錄結果並分析數據。 結果顯示,在水體中粉體的抗菌實驗中,聚苯胺粉末5g/L 與大腸桿菌(濃度:106 CFU/L)接觸30分鐘後,即可達到抗菌率100%之效果,相同條件下金黃色葡萄球菌之抗菌率為80%。聚苯胺複合濾材在瓶杯抗菌試驗中,大腸桿菌及金黃色葡萄球菌皆於30分鐘內達到抗菌率99.99%以上。濾材實體水樣抗菌實驗中,汙水廠放流水(原水生菌數: 2*106 CFU/L ) 接觸30分鐘後,抗菌率便達到100%,養殖場水樣(原水生菌數: 8.5*107 CFU/L ) ,於反應一天之後達成抗菌率100%,證明複合式濾材在實體水樣具有潛力的抗菌能力。

英文摘要

According to the data, the average annual freshwater water consumption in Taiwan's aquaculture industry is 68 million tons per year, indicating that the aquaculture industry needs a large amount of fresh water. It is not easy to obtain fresh water resources because of the long shortage of water resources caused by terrain factors in Taiwan. Therefore, how to reuse water resources has become an important subject. For Taiwan, high-density aquaculture fisheries have a high degree of cleanliness requirements for water, and most farms have a very good water treatment and recovery system, but their equipment systems are extremely costly and therefore inexpensive Equipment is a popular research project in recent years. Polyaniline structural characteristics cover a wide range of physical, chemical, magnetic, electrical and other aspects of application value, in recent years, many studies have pointed out that polyaniline can effectively inhibit bacteria, mold and fungi. In this study, dodecyl benzene sulfonic acid and titanium dioxide doped polyaniline were used to study the antibacterial effect of water system. The research included the identification of polyaniline composite material and composite filter, and composite materials and filter materials used in the bottle of antibacterial experiments and the actual water sample antibacterial, record the results and analyze the data. The results showed that the antimicrobial effect of polyaniline powder 5g / L in Escherichia coli (concentration: 106 CFU / L) was 30%, and the antibacterial rate was 100%. Under the same conditions, the antibacterial rate of Staphylococcus aureus was 80%. Polyaniline composite filter in the bottle cup antibacterial test, E. coli and Staphylococcus aureus in 30 minutes to reach the antibacterial rate of 99.99% or more. In the antibacterial experiment of the filter material, the antibacterial rate was 100% after the contact with the effluent (2 * 106 CFU / L) of the sewage plant (the number of raw bacteria: 8.5 * 107 CFU / L), reached an antibacterial rate of 100% after one day of reaction, demonstrating that the composite filter has the potential for antibacterial activity in the solid water sample.

主题分类 工學院 > 環境工程研究所
工程學 > 市政與環境工程
参考文献
  1. 1. Jolley, R.L. and I.H. Suffet, Concentration Techniques for Isolating Organic Constituents in Environmental Water Samples. 1986. 214: p. 3-14.
    連結:
  2. 2. Shimano, J.Y. and A.G. MacDiarmid, Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synthetic Metals, 2001. 123(2): p. 251-262.
    連結:
  3. 3. Janata, J. and M. Josowicz, Conducting polymers in electronic chemical sensors. Nature materials, 2003. 2(1): p. 19-24.
    連結:
  4. 4. Gizdavic-Nikolaidis, M.R., et al., Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater, 2011. 7(12): p. 4204-9.
    連結:
  5. 6. Castells, M., et al., Mobile communication and society: A global perspective. 2009: Mit Press.
    連結:
  6. 9. Griffin, P.M. and R.V. Tauxe, The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiologic reviews, 1991. 13(1): p. 60-98.
    連結:
  7. 14. SJÖDAHL, J., Structural Studies on the Four Repetitive Fc‐Binding Regions in Protein A from Staphylococcus aureus. The FEBS Journal, 1977. 78(2): p. 471-490.
    連結:
  8. 16. Bilal, S., S. Gul, and K. Ali, Synthesis and characterization of completely soluble and highly thermally stable PANI-DBSA salts. Synthetic Metals, 2012. 162(24): p. 2259-2266.
    連結:
  9. 17. Chiang, J.-C. and A.G. MacDiarmid, ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 1986. 13(1-3): p. 193-205.
    連結:
  10. 19. Letheby, H., XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society, 1862. 15: p. 161-163.
    連結:
  11. 20. Macdiarmid, A.G., et al., “Polyaniline”: interconversion of metallic and insulating forms. Molecular Crystals and Liquid Crystals, 1985. 121(1-4): p. 173-180.
    連結:
  12. 21. Green, A.G. and A.E. Woodhead, CCXLIII.—Aniline-black and allied compounds. Part I. Journal of the Chemical Society, Transactions, 1910. 97: p. 2388-2403.
    連結:
  13. 22. Mohilner, D.M., R.N. Adams, and W.J. Argersinger, Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. Journal of the American Chemical Society, 1962. 84(19): p. 3618-3622.
    連結:
  14. 23. Watanabe, A., et al., Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules, 1987. 20(8): p. 1793-1796.
    連結:
  15. 24. Huang, W.-S., B.D. Humphrey, and A.G. MacDiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986. 82(8): p. 2385-2400.
    連結:
  16. 25. Lamouri, S., S. Bendahgane, and A. Oudia, The Preparation and Analytical Study of Conducting Polyaniline Thin Films. J Pet Environ Biotechnol, 2014. 5(171): p. 2.
    連結:
  17. 26. Sultana, S., et al., Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline. Journal of Materials Science & Technology, 2013. 29(9): p. 795-800.
    連結:
  18. 27. Furukawa, Y., et al., Vibrational spectra and structure of polyaniline. Macromolecules, 1988. 21(5): p. 1297-1305.
    連結:
  19. 28. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
    連結:
  20. 29. Barbero, C., et al., Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI). Synthetic metals, 1993. 55(2-3): p. 1539-1544.
    連結:
  21. 30. Tsutsumi, H., S. Yamashita, and T. Oishi, Application of polyaniline/poly (p-styrenesulfonic acid) composite prepared by post-polymerization technique to positive active material for a rechargeable lithium battery. Synthetic metals, 1997. 85(1): p. 1361-1362.
    連結:
  22. 31. Kumar, G., et al., Polyaniline as an electrode material for magnesium reserve battery. Synthetic Metals, 1996. 80(3): p. 279-282.
    連結:
  23. 32. Kobayashi, N., K. Yamada, and R. Hirohashi, Effect of anion species on electrochemical behavior of poly (aniline) s electropolymerized in dichloroethane solution. Electrochimica acta, 1992. 37(11): p. 2101-2102.
    連結:
  24. 33. Bernard, M.-C., A. Hugot-Le Goff, and W. Zeng, Characterization and stability tests of an all solid state electrochromic cell using polyaniline. Synthetic metals, 1997. 85(1): p. 1347-1348.
    連結:
  25. 34. Nguyen, T.D., et al., Mechanism for protection of iron corrosion by an intrinsically electronic conducting polymer. Journal of Electroanalytical Chemistry, 2004. 572(2): p. 225-234.
    連結:
  26. 36. Li, Q., et al., Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2008. 10(9): p. 1299-1302.
    連結:
  27. 37. Dhawan, S., N. Singh, and D. Rodrigues, Electromagnetic shielding behaviour of conducting polyaniline composites. Science and Technology of Advanced Materials, 2003. 4(2): p. 105-113.
    連結:
  28. 39. Gizdavic-Nikolaidis, M., et al., Conducting polymers as free radical scavengers. Synthetic Metals, 2004. 140(2): p. 225-232.
    連結:
  29. 41. Jacoby, W.A., et al., Heterogeneous photocatalysis for control of volatile organic compounds in indoor air. Journal of the Air & Waste Management Association, 1996. 46(9): p. 891-898.
    連結:
  30. 42. 王國至, 應用二氧化鈦/聚苯胺複合物去除甲醛之研究. 中原大學生物環境工程研究所學位論文, 2014: p. 1-62.
    連結:
  31. 43. Lin, H.-F., S.-C. Liao, and S.-W. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of photochemistry and photobiology A: Chemistry, 2005. 174(1): p. 82-87.
    連結:
  32. 44. Saikia, L., et al., Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General, 2015. 490: p. 42-49.
    連結:
  33. 45. Radoičić, M., et al., Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Applied Catalysis B: Environmental, 2013. 136-137: p. 133-139.
    連結:
  34. 46. 蘇心敏, 常溫電漿改質聚丙烯纖維接枝硫脲去除銅離子之可行性. 成功大學環境工程學系學位論文, 2006: p. 1-95.
    連結:
  35. 47. Tang, C., et al., Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 2007. 25(3): p. 194-202.
    連結:
  36. 49. Kris-Etherton, P.M., W.S. Harris, and L.J. Appel, Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. circulation, 2002. 106(21): p. 2747-2757.
    連結:
  37. 50. Richardson, S.D., et al., Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environmental Science & Technology, 2003. 37(17): p. 3782-3793.
    連結:
  38. 55. Inal, J.M., Phage therapy: a reappraisal of bacteriophages as antibiotics. ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS-ENGLISH EDITION-, 2003. 51(4): p. 237-244.
    連結:
  39. 5. WHO (2003).
  40. 7. Tsai, H.-F., Development of quantitative methods to detect free-living amoeba and Legionella and comparison of typing analysis methods of Legionella pneumophila in environmental water samples. 2012.
  41. 8. 潘子明, 痢疾流行. 科學月刊, 1998. 27: p. 103-111.
  42. 10. Blank, T.E., J.-P. Nougayrède, and M.S. Donnenberg, CHAPTER 3 - Enteropathogenic Escherichia coli, in Escherichia Coli. 2002, Academic Press: San Diego. p. 81-118.
  43. 11. Acheson, D.W. and G.T. Keusch, Which Shiga toxin-producing types of E. coli are important. ASM news, 1996. 62(6): p. 302-306.
  44. 12. Markey, B., et al., Clinical Veterinary Microbiology E-Book. 2013: Elsevier Health Sciences.
  45. 13. Baba, T., et al., 3 - The Staphylococcus aureus Genome, in Staphylococcus Aureus. 2004, Woodhead Publishing. p. 66-153.
  46. 15. 韓建中, 衍生聚苯胺與水性聚苯胺的合成及其抗腐蝕應用的研究. 2008.
  47. 18. Epstein, A.J., Electrical Conductivity in Conjugated Polymers A2 - Rupprecht, Larry, in Conductive Polymers and Plastics. 1999, William Andrew Publishing: Canada. p. 1-9.
  48. 35. 刘谊君, et al., 聚苯胺防腐导电涂料的制备研究. 塗料工業, 2007. 37(6): p. 16-18.
  49. 38. Seshadri, D.T. and N.V. Bhat, Use of polyaniline as an antimicrobial agent in textiles. 2005.
  50. 40. 曾焜煜, 以紫外線/光觸媒程序處理氣相丙酮反應行為之研究. 2003.
  51. 48. 徐振源, 抗菌纖維紗線的發展趨勢與應用. 紡織月刊, 2006. 118: p. 44-57.
  52. 51. ONUAA, 2016年世界渔業和水產養殖状况.pdf. 2016.
  53. 52. 李中光, et al., 超集約式養殖及其用水之處理. 2013, 環保簡訊.
  54. 53. 李爱华, 水产养殖中使用的抗菌药物及细菌耐药性. 中国水产科学, 2002. 9(1): p. 87-91.
  55. 54. 计新丽 and 林燕棠, 海水养殖自身污染机制及其对环境的影响. 海洋环境科学, 2000. 19(4): p. 66-71.