题名

利用一鍋法合成碳量子點的光學特性

并列篇名

Optical Properties of Carbon Quantum Dots Synthesized by the One-pot Method

DOI

10.6840/cycu201700474

作者

張巧欣

关键词

碳量子點 ; 氧化石墨烯 ; 螢光能量共振轉移 ; 能隙調整 ; carbon quantum dots ; Graphene oxide ; Förster resonance energy transfer ; Band gap engineering

期刊名称

中原大學奈米科技碩士學位學程學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

沈志霖

内容语文

繁體中文

中文摘要

本論文利用一鍋合成法合成碳量子點與氧化石墨烯量子點,其合成方法優點主要是可以大量製造且過程簡單又快速。本論文第一部分為改變氮摻雜濃度得到不同螢光波長的氧化石墨烯量子點,其螢光位移波長達225 nm,實現了氧化石墨烯量子點的能隙工程。經由穿透式電子顯微鏡及X射線光電子能譜的分析,推論氧化石墨烯量子點的能隙改變可能是由氮掺雜所產生結果而非來自量子侷限效應。另外將氧化石墨烯量子點塗佈於氮化鎵半導體表面,發現其具有提升氮化鎵螢光強度之現象,螢光強度最高可提升2.4倍。此結果對未來應用於藍光發光二極體上可能具有很大的效益。 第二部份我們利用葡萄糖作為前驅物,合成出量子產率達22%的藍綠光碳量子點。此量子點可應用於過氧化氫的偵測,結果顯示對於過氧化氫的偵測靈敏度可達0.1μM。另外我們設計出光波導式螢光共振能量轉移,由藍光氮化銦鎵量子井 (施子) 將能量轉移至碳量子點 (受子),實驗結果計算出能量轉移效率最高可達84.2%,且轉移效率與距離四次方的倒數(d-4)成正比。

英文摘要

One pot synthesis of nanomaterials has shown promising advantages that enables production of nanomaterials in large quantity with facile synthesis process. In this thesis we present the synthesis of carbon quantum dots and graphene oxide quantum dots (GOQDs) using different precursors. In the first part of this thesis, the synthesis of the red to blue GOQDs were obtained by varying the nitrogen doping concentration having a fluorescence shift wavelength of 225 nm, implementing the band gap engineering for GOQDs. Based on the analysis of TEM and XPS, it is proved that the band gap engineering of the GOQDs is not attributed to the quantum confinement effect but due to the creation of a new energy level after nitrogen doping. Furthermore, the GOQDs were introduced on the surface of GaN, which presented an enhancement with a factor of 2.4 with respect to the fluorescence intensity of the pristine GaN. For the second part of this thesis we synthesized the carbon quantum dots (CQDs) using glucose as precursor. The as-synthesized blue-carbon quantum dots having 22% quantum yield was used for hydrogen peroxide detection, with detection limit up to 0.1 μM. Fluorescence resonance energy transfer between CQDs and InGaN was also studied. The optical waveguiding fluorescence resonance energy transfer enables the transfer from the InGaN quantum well to the CQDs. The experimental results exhibited transfer efficiency as high as 84.2%. From the dependence of transfer efficiency on the cap thickness (d) of the quantum well, it was found that the transfer efficiency is proportional to the inverse of the fourth power (d-4).

主题分类 理學院 > 奈米科技碩士學位學程
工程學 > 工程學總論
参考文献
  1. [8] R. Ye, Z. Peng, A. Metzger, J. Lin, J.A. Mann, K. Huang, C. Xiang, X. Fan, E.L.G. Samuel, L.B. Alemany, A.A. Martí, J.M. Tour, ACS Applied Materials & Interfaces, 7 (2015), pp. 7041-7048.
    連結:
  2. [13] D.L. Andrews, Chemical Physics, 135 (1989), pp. 195-201.
    連結:
  3. [16] M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Nature, 429 (2004), pp. 642-646.
    連結:
  4. [23] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angewandte Chemie International Edition, 52 (2013), pp. 3953-3957.
    連結:
  5. [26] B. Zheng, Y. Chen, P. Li, Z. Wang, B. Cao, F. Qi, J. Liu, Z. Qiu, W. Zhang, Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties, Nanophotonics2017, pp. 259.
    連結:
  6. [29] B.P. Maliwal, Z. Gryczynski, J.R. Lakowicz, Analytical Chemistry, 73 (2001), pp. 4277-4285.
    連結:
  7. [32] Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, New Journal of Chemistry, 36 (2012), pp. 861-864.
    連結:
  8. [35] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Advanced Materials, 23 (2011), pp. 1020-1024.
    連結:
  9. [1] R. Rossetti, S. Nakahara, L.E. Brus, The Journal of Chemical Physics, 79 (1983), pp. 1086-1088.
  10. [2] J. Shen, Y. Zhu, X. Yang, C. Li, Chemical Communications, 48 (2012), pp. 3686-3699.
  11. [3] M. Thakur, S. Pandey, A. Mewada, V. Patil, M. Khade, E. Goshi, M. Sharon, Journal of Drug Delivery, 2014 (2014), p. 282193.
  12. [4] Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, Y. Park, H. Lee, Small, 10 (2014), pp. 866-870.
  13. [5] W.S. Hummers, R.E. Offeman, Journal of the American Chemical Society, 80 (1958), pp. 1339-1339.
  14. [6] J. Ito, J. Nakamura, A. Natori, Journal of Applied Physics, 103 (2008), p. 113712.
  15. [7] W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Science, 321 (2008), pp. 1815-1817.
  16. [9] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Journal of the American Chemical Society, 126 (2004), pp. 12736-12737.
  17. [10] Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Journal of the American Chemical Society, 128 (2006), pp. 7756-7757.
  18. [11] T. Förster, Annalen der Physik, 437 (1948), pp. 55-75.
  19. [12] B. Valeur, M.N. Berberan-Santos, Excitation Energy Transfer, Molecular Fluorescence, Wiley-VCH Verlag GmbH & Co. KGaA2012, pp. 213-261.
  20. [14] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004), pp. 666-669.
  21. [15] D. Basko, G.C. La Rocca, F. Bassani, V.M. Agranovich, The European Physical Journal B - Condensed Matter and Complex Systems, 8 (1999), pp. 353-362.
  22. [17] P.-J.J. Huang, J. Liu, Small, 8 (2012), pp. 977-983.
  23. [18] M. Cameron, R.S. Hoerrner, J.M. McNamara, M. Figus, S. Thomas, Organic Process Research & Development, 10 (2006), pp. 149-152.
  24. [19] H. Ishikawa, T. Suzuki, Y. Hayashi, Angewandte Chemie International Edition, 48 (2009), pp. 1304-1307.
  25. [20] J.-Y. Li, Y. Liu, Q.-W. Shu, J.-M. Liang, F. Zhang, X.-P. Chen, X.-Y. Deng, M.T. Swihart, K.-J. Tan, Langmuir, 33 (2017), pp. 1043-1050.
  26. [21] C. López, M. Zougagh, M. Algarra, E. Rodríguez-Castellón, B.B. Campos, J.C.G. Esteves da Silva, J. Jiménez-Jiménez, A. Ríos, Talanta, 132 (2015), pp. 845-850.
  27. [22] D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Light Sci Appl, 4 (2015), p. e364.
  28. [24] S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Nanoscale, 5 (2013), pp. 11665-11671.
  29. [25] L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Journal of Materials Chemistry C, 1 (2013), pp. 4908-4915.
  30. [27] J.R. Lakowicz, I. Gryczynski, Z. Gryczynski, J.D. Dattelbaum, Analytical Biochemistry, 267 (1999), pp. 397-405.
  31. [28] A.R. Clapp, I.L. Medintz, J.M. Mauro, B.R. Fisher, M.G. Bawendi, H. Mattoussi, Journal of the American Chemical Society, 126 (2004), pp. 301-310.
  32. [30] D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D.V. Vyalikh, Nano Letters, 11 (2011), pp. 5401-5407.
  33. [31] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Journal of the American Chemical Society, 134 (2012), pp. 15-18.
  34. [33] Q. Li, S. Zhang, L. Dai, L.-s. Li, Journal of the American Chemical Society, 134 (2012), pp. 18932-18935.
  35. [34] M. Li, W. Wu, W. Ren, H.-M. Cheng, N. Tang, W. Zhong, Y. Du, Applied Physics Letters, 101 (2012), p. 103107.
  36. [36] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Letters, 9 (2009), pp. 1752-1758.
  37. [37] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Letters, 11 (2011), pp. 2472-2477.
  38. [38] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, ACS Nano, 4 (2010), pp. 6337-6342.
  39. [39] Y. Xu, Y. Mo, J. Tian, P. Wang, H. Yu, J. Yu, Applied Catalysis B: Environmental, 181 (2016), pp. 810-817.
  40. [40] Y.-N. Hao, H.-L. Guo, L. Tian, X. Kang, RSC Advances, 5 (2015), pp. 43750-43755.
  41. [41] Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, S. Sun, Catalysts, 5 (2015), p. 1574.
  42. [42] Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Nano Letters, 13 (2013), pp. 2436-2441.
  43. [43] M.R. Rojas, C. Leung, D. Whitley, Y. Zhu, R.G. Arnold, A.E. Sáez, Industrial & Engineering Chemistry Research, 50 (2011), pp. 12479-12487.
  44. [44] P. Niethammer, C. Grabher, A.T. Look, T.J. Mitchison, Nature, 459 (2009), pp. 996-999.
  45. [45] Z. Chen, X. Ren, X. Meng, D. Chen, C. Yan, J. Ren, Y. Yuan, F. Tang, Biosensors and Bioelectronics, 28 (2011), pp. 50-55.
  46. [46] D. Kumar, S. Umrao, H. Mishra, R.R. Srivastava, M. Srivastava, A. Srivastava, S.K. Srivastava, Sensors and Actuators B: Chemical, 247 (2017), pp. 170-178.
  47. [47] K.M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, A.N. Vamivakas, Applied Physics Letters, 108 (2016), p. 021101.
  48. [48] L. Gaudreau, K.J. Tielrooij, G.E.D.K. Prawiroatmodjo, J. Osmond, F.J.G. de Abajo, F.H.L. Koppens, Nano Letters, 13 (2013), pp. 2030-2035.
  49. [49] F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, S. Berciaud, Nano Letters, 15 (2015), pp. 1252-1258.