题名

血液輸血前血型檢驗晶片

并列篇名

The Blood Typing Chip for Blood Transfusion

DOI

10.6840/cycu201700139

作者

黃經緯

关键词

生醫微機電 ; 生物晶片 ; 微流體 ; 血型分類 ; BioMEMS ; BioChip ; Microfluidics ; Blood Typing

期刊名称

中原大學機械工程學系學位論文

卷期/出版年月

2017年

学位类别

博士

导师

張耀仁

内容语文

繁體中文

中文摘要

血型分類目的在提供病人血液,使輸入的紅血球能適當存活,且 病人本身的紅血球不會受到輸入的血液成分破壞而發生溶血反應。在 血庫中心須經過自動化血液檢測機台的多項常規測試確保血液相容 性才能輸血給病人,但自動化機台價格昂貴且佔用相當大的空間。醫 院輸血的程序中常使用交叉配對實驗檢查捐血者與受捐者的血液凝 集反應程度。近來,人為操作的方式常用96 孔盤進行並透過肉眼判 定血液凝集程度,但該方法較為繁瑣及費力,不適合用來作為自動化 檢測的方式。而微流體晶片可以處理、操作微量體積的流體如試劑及 檢體,並可以在微流道內運輸流體進行稀釋、粒子分離、混合及反應。 本研究的目的旨在利用微機電技術製作出符合臨床上血液輸血前之 血型快速檢驗晶片,該晶片包含了微過濾器、微混合器、微流道、檢 測區塊、廢液存放區等相關微元件整合而成的複合式晶片。在實驗方 面,首先,晶片前端的微流道設計成可將血液分離出血漿及血球兩大 部分,並在血漿蒐集區計算出血漿採集率約為42.80%~50.80%,微過 濾器前端所採取到的白血球約為8~9 顆,而紅血球蒐集槽所採集到的 白血球數目則為0。第二,晶片中端設計微混合器作為混合試劑用, 將兩種不同色染料來驗證混合實驗,同時間採用直線流道來作為對照 組,並透過影像二值化分析兩種不同流道的混合效率,結果以微混合器的混合效果優於對照組。最後,以全血進行血型分類實驗,在晶片 末端的血型檢測區先以裸眼判讀血液凝集強度,再利用LabVIEW 撰 寫影像程式計算血液凝集面積加以輔佐,建立血液凝集強度於兩者間 的關係。在A 血型方面,血球凝集+1 的像素為6601.5,+4 的像素則 為24932.34;B 血型方面,血球凝集+2 的像素為14955.75,+3 的像 素則為22053.00。依照影像程式數據顯示,隨著血液凝集強度的增 強,二值化亦會呈現線性化增強的現象。

英文摘要

The purpose of blood typing is providing the blood of blood banking for the patients, surviving the input erythrocyte. The erythrocyte of patients will not destroy the composition of input blood causing hemolytic reaction. The blood bank must examine several routine inspection through the automatic blood inspection machine to insure the patient blood compatibility. But the automatic machine is expensive and take up more roomage. Cross matching usually uses to inspect the erythrocyte agglutination reaction of donators and donees. Recently, manual operation usually operates through the 96 wells and determines the class of erythrocyte agglutination by the naked eyes. But the 96 wells detection method is complex and time-consuming so that it cannot become automated test equipment. However, micro-fluidic chip can manipulate the micro volume such as reagents and specimen and carry on dilution, particle separation, mixture and reaction of the micro-fluidic transportation in the micro-channels. The purpose of the research is utilizing the MEMS technique to produce the clinical rapid blood typing chip which consists of micro-filter, micro-mixer, micro-channels, inspection area and reservoir wastes areas of complex chip. In the experiments, first all, the micro-channels of frontier chip was designed by separating the serum and blood and counted the serum collecting rate approximate 42.80% to 50.80%. The collected leukocyte on the front of micro-filter was approximate 8 to 9 cells, and on the erythrocyte collected champ was 0 cell. Secondly, the middle area of the chip was micro-mixer designed by mixing the reagents, combining the two colors dye to verify the mixture experiment. The straight micro-channels was adopted to be the control group simultaneously and analysis the mixture effects of two different micro-channels through the binary image. The result of the experiments is mixture micro-channels prior to the straights. Finally, the whole blood was injected in the chip for the blood typing examination. The agglutination class could be inspected by naked eyes on the blood type area in the end of the chip and counted the area of the erythrocyte agglutination by using the image program of the LabVIEW constructing the relations of the clinical and program. On the A type aspect, the pixels was 6601.5 and 24932.34 for the agglutination class +1 and +4 respectively. On the B type aspect, the pixels was 14955.75 and 22053.00 for the agglutination class +2 and +3 respectively. According to the data display of the image program, with the inhanced blood agglutination, the binary image also increased linearly.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [2] S. Chien and K-M Jan, " Ultrastructural Basis of the Mechanism of
    連結:
  2. Rouleaux Fomation, " Microvascular Research 5, 155-166, 1973
    連結:
  3. [4] N. D. Avent and M. E. Reid,"The Rh blood group system: a review,"
    連結:
  4. [5] C. M. Westhoff,"The Rh blood group system in review: A new face
    連結:
  5. [6] G. Dannels, and M. E. Reid, "Blood groups: the past 50 years,"
    連結:
  6. Transfusion, Vol. 50, pp. 281-289, 2010
    連結:
  7. "International society of blood transfusion committee on terminology
    連結:
  8. for red blood cell surface antigen: Macao report," Vox Sanguinis, Vol.
    連結:
  9. [8] D. J. Anstee, "Red cell genotyping and the future of pretransfusion
    連結:
  10. [9] S. C. Lo, J. S. Chang, S. W. S. Lin, and D. T. Lin, "Immunological
    連結:
  11. characterization of anti-Mia, a red blood cell alloantibody, in Taiwan,"
    連結:
  12. [10]P. Lalezari, and A. F. Jiang, "The manual polybrene test: a simple and
    連結:
  13. rapid procedure for detection of red cell antibodies," Transfusion, Vol.
    連結:
  14. 20, pp. 206-211, 1980
    連結:
  15. pp. 556-557, 1988
    連結:
  16. [12] M. Lin, "Compatibility testing without a centrifuge: the slide
    連結:
  17. detection of weak and "incomplete" RH agglutinins," The Lancet, Vol.
    連結:
  18. 246, pp. 255-266, 1945
    連結:
  19. microchip for genome-wide microRNA profiling in human and mouse
    連結:
  20. extraction of plasma from whole blood on a rotating disk," Lab Chip,
    連結:
  21. pathogen specific DNA extraction from whole blood on a centrifugal
    連結:
  22. Single-step centrifugal hematocrit determination on a 10-$ processing
    連結:
  23. device," Biomed. Microdevices, 2007, 9, 795–799.
    連結:
  24. "Microfluidic Blood/Plasma Separation Unit Based on Microchannel
    連結:
  25. Conference on Microtechnologies in Medicine and Biology, 2005
    連結:
  26. the 12th International Conference on Micro Total Analysis Systems
    連結:
  27. on-chip blood serum separator using self-assembled silica
    連結:
  28. preparation in microstructured devices," Microsystem technology in
    連結:
  29. chemistry and life science, Vol. 194, pp. 215-231, 1998
    連結:
  30. for detection of nerve agent sarin in blood," Lab on a chip, Vol. 8, pp.
    連結:
  31. 885-891, 2008
    連結:
  32. S. Yang, "Handheld mechanical cell lysis chip with ultra-sharp silicon
    連結:
  33. [27] D. H. Yoon, Y. K. Bahk, B. H. Kwon, S. S. Kim, Y. D. Kim, T.
    連結:
  34. Performance Using Self-Tuning of Flow Resistance," Japanese
    連結:
  35. 1000-1003, 2011
    連結:
  36. C. Tai, "3D microfilter device for viable circulating tumor cell (CTC)
    連結:
  37. enrichment from blood," Biomedical microdevices, Vol. 13, pp.
    連結:
  38. 203-213, 2011
    連結:
  39. nucleated red blood cells and anucleate erythrocytes using a
    連結:
  40. 1862-1866, 2010
    連結:
  41. "Microchip-based Devices for Molecular Diagnosis of Genetic
    連結:
  42. Tabeling, "An example of a chaotic micromixer: the cross-channel
    連結:
  43. “Disposable integrated microfluidic biochip for blood typing by
    連結:
  44. with optical bio-disc (US Patent No. 2006/0270064 A1).
    連結:
  45. 參考文獻
  46. [1] 樓迎統, 陳君侃, 黃榮棋, 王錫五合著 , 實用生理學, 華都文化
  47. 出版社, ISBN:9576406161, 2002
  48. [3] Technical Manual 15th Edition, AABB, 2005: United States
  49. Blood, Vol. 95, pp. 375-388, 2000
  50. for the next decade," Transfusion, Vol.44, pp. 1663-1673, 2004
  51. [7] G. Dannels, L. Castilho, W. A. Flegel, A. Fletcher, G. Garratty, et al.,
  52. 96, pp. 153-156, 2009
  53. testing," Blood, Vol. 114, pp. 248-256, 2009
  54. Vox Sanguinis, Vol. 83, pp. 162-164, 2002
  55. [11]J. A. Lown, and J. G. Ivey, "Polybrene technique for red cell antibody
  56. screening using microplates," Journal of Clinical Pathology, Vol. 41,
  57. polybrene method," Transfusion, Vol. 44, pp. 410-413, 2004
  58. [13] R. R. A. Coombs, A. E. Mourant ,and R. R. Race, "A new test for the
  59. [14] C. G. Liu, G. A. Calin, B. Meloon, N. Gamliel, C. Sevignani, M.
  60. Ferracin, C. D. Dumitru, M. Shimizu, S. Zupo, M. Dono, H. Alder, F.
  61. Bullrich, M. Negrini, and C. M. Croce, "An oligonucleotide
  62. tissues," PNAS, Vol. 101, pp. 9740-9744, 2004
  63. [15] S. Haeberle, T. Brenne, R. Zengerl and J. Ducree, "Centrifugal
  64. 2006, 6, 776–781.
  65. [16] J. Steigert, M. Gruman, T. Brenne, L. Riegge, J. Harte, R. Zengerl
  66. and J. Ducree, "Fully integrated whole blood testing by real-time
  67. absorption measurement on a centrifugal platform," Lab Chip, 2006,
  68. 6, 1040–1044.
  69. [17] Y.-K. Cho, J.-G. Le, J.-M. Par, B.-S. Le, Y. Le and C. Ko, "One-step
  70. microfluidic device," Lab Chip, 2007, 7, 565–573.
  71. [18] L. Riegger, M. Grumann, J. Steigert, S. Lutz, C. P. Steinert, C.
  72. Mueller, J. Viertel, O. Prucker, J. R€uhe, R. Zengerle and J. Ducree, "
  73. [19]C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, W. Menz,
  74. Bend Structures," Annual International IEEE EMBS Special Topic
  75. [20] B. He, L. Tan and F. Regnier, " Microfabricated Filters for
  76. Microfluidic Analytical Systems," Anal. Chem., 1999, 71, 1464–1468.
  77. [21] J. S. Shim, A. Browne, S. H. Lee and C. H. Ahn, in Proceedings of
  78. (μTAS 2008), San Diego, USA, October 12–16, 2008, pp. 1784–1786.
  79. [22] J. Han, S. H. Lee, Y. Heo, J. H. Chul, Chong H. and Ahn, " An
  80. microsphere filter," in The 13th International Conference o Solid-State
  81. Sensors, Actuators and Microsystems, 2005, 2005, pp. 1688–1691.
  82. [23] P. Wilding, J. Pfahier, H. H. Bau, J. N. Zemel, and L. J. Krlcka,
  83. "Manipulation and flow of biological fluids in straight channels
  84. micromachined in silicon," Clinical chemical, Vol. 40, pp. 43-47,1994
  85. [24] J. Cheng, L. J. Kricka, E. L. Sheldon, and P. Wilding, "Sample
  86. [25] H. Y. Tan, W. K. Loke, Y. T. Tan, and N. T. Nguyen, "A lab-on-a-chip
  87. [26] S. S. Yun, S. Y. Yoon, M. K. Song, S. H. Im, S. Kim, J. H. Leea, and
  88. nano-blade arrays for rapid intracellular protein extraction," Lab on a
  89. chip, Vol. 10, pp. 1442-1446, 2010
  90. Arakawa, J. S. Go, and S. Shoji, "Improvement of Filtration
  91. Journal of Applied Physics, Vol. 50, pp. 017201, 2011
  92. [28] S. A. Park, E. Jang, W. G. Koh, B. Kim, "Development of analytic
  93. microdevices for the detection of phenol using polymer hydrogel
  94. particles containing enzyme–QD conjugates," Talanta, Vol. 84, pp.
  95. [29] S. Zheng, H. K. Lin, B. Lu, A. Williams, R. Datar, R. J. Cote, and Y.
  96. [30] D. Lee, P. Sukumar, A. Mahyuddin, M. Choolani, and G. Xu,
  97. "Separation of model mixtures of epsilon-globin positive fetal
  98. microfluidic device," Journal of Chromatography A, Vol. 1217, pp.
  99. [31] J. Cheng, P. Fortina, S. Surrey, L. J. Kricka, and P. Wilding,
  100. Diseases," Molecular Diagnosis, Vol. 1, pp. 183-199 ,1996
  101. [32] R. W. Fox, A. T. McDonald, and P. J. Pritchard, "Introduction to
  102. Fluid Mechanics," Wiley international edition
  103. [33] N. T. Nguyen, and Z. Wu, "Micromixers—a review," Journal of
  104. Micromechanics and Microengineering, Vol. 15, pp. R1-R16, 2005
  105. [34] A. Dodge, M. C. Jullien, Y. K. Lee, X. Niu, F. Okkels, and P.
  106. 78
  107. micromixer," Comptes Rendus Physique, Vol. 5, pp. 557-563, 2004
  108. [35]D. S. Kim, S. H. Lee, C. H. Ahn, J. Y. Lee, and T. H. Kwon,
  109. plastic microinjection molding,” Lab on chip, Vol.6, pp. 794-802,
  110. 2006
  111. [36]John Gordon and Susan Hurt, Methods and apparatus for blood typing
  112. with optical bio-discs (Euro Patent No. WO2002059622 A1,
  113. EP1410042 A1)
  114. [37]Gordon J, Hurt S, Cohen D, Methods and apparatus for blood typing