题名

隱形生物屏障:探測細胞培養液中半胱胺酸之存在用於干擾聚乙二醇化金奈米粒子之穩定性

并列篇名

Probing the Invisible Barrier of Cysteine Interfering the Stability of Pegylated Gold Nanoparticles in the Culture Medium

DOI

10.6840/cycu201700904

作者

王駿偉

关键词

半胱胺酸;金奈米粒子;巨噬細胞;金硫鍵結;奈米醫學 ; Cysteine;Macrophage;Gold nanoparticle;Au-S bond;Nanomedicine

期刊名称

中原大學奈米科技碩士學位學程學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

林政鞍

内容语文

繁體中文

中文摘要

近年來金奈米粒子在癌症醫學中扮演著診斷與治療之材料,因生物相容性高、良好光學特性、延展性佳,常於生物醫學應用,但血液中蛋白會黏附在奈米材料表面形成蛋白暈狀體(protein corona),進而被免疫系統中單核吞噬細胞系統(Mononuclear phagocyte system, MPS)清除,造成奈米材料到達目的前的生物屏障。本研究提出血液中小分子半胱胺是影響金奈米粒子穩定性之重要因子,巨噬細胞則扮演影響半胱胺酸恆定之重要角色,成為金奈米材料應用於體內時之重要隱形生物屏障。本研究論文首先利用RAW264.7巨噬細胞與金奈米粒子共培養模式,以暗視野顯微系統觀測血清蛋白與巨噬細胞辨識、清除奈米材料之現象,並驗證聚乙二醇化金奈米粒子可逃脫生物辨識之過程,但聚乙二醇僅提供24小時穩定性,推究其原因,我們透過培養液中胱胺酸添加之有無,以DTNB(Ellman’s reagent)與螢光金奈米團簇(Au@GSH)檢測巨噬細胞培養液中半胱胺酸生成之含量,並探討其影響聚乙二醇化金奈米粒子長期穩定性之關係。本研究發現巨噬細胞的確可代謝胱胺酸,並維持培養液中半胱胺酸之恆定,在無胱胺酸添加組別中則無法提升半胱胺酸恆定濃度,故可推斷血液中半胱胺酸之恆定關係,應對於金奈米粒子穩定性扮演舉足輕重的角色,未來在奈米探針設計上也因避免小分子半胱胺酸之攻擊,提升奈米材料用於精準治療之效益。

英文摘要

Gold nanoparticles are a material of diagnosis and therapy in cancer medicine in recent years. Because of its high biocompatibility, excellent optical properties and extension, gold nanoparticles are usually utilized to biomedicine. Mononuclear phagocyte system (MPS) clears protein corona which is formed by attaching protein in blood to the nanomaterial and further becomes a biological barrier before the nanomaterial reaches the target. In this study, cysteine of small molecule in blood is a key to influence stability of gold nanoparticles. Macrophage plays an important role in constant cysteine and further becomes an important and invisible biological barrier of gold nanoparticles applications in vivo. First of all, RAW264.7 macrophage is utilized to co-culture with gold nanoparticles, serum protein, macrophage identification and nanomaterial clearance are observed by the dark-field microscope and further verify that PEGylated gold nanoparticles are able to escape from biological identification. Because polyethylene glycol has only 24hrs stability, DTNB(Ellman’s reagent) and fluorescent gold nanocluster are utilized to inspect amount of cysteine generated in macrophage medium through addition of cystine in medium or not. Therefore, long-term stability of PEGylated gold nanoparticles is explored by cystine. This study found that macrophage metabolizes additional cystine into cysteine in culture medium but could not be elevated without cystine addition. Constant cysteine in blood plays an important role to interfere the stability of gold nanoparticles. Proper nanoprobes design can enhance efficiency of nanomaterial applied for precision therapy when avoiding attacks of small molecule cysteine.

主题分类 理學院 > 奈米科技碩士學位學程
工程學 > 工程學總論
参考文献
  1. 1. Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55.
    連結:
  2. 2. Frens, G., controlled nucleation for the regulation of the particle size in monodisperse. Nature Physical Science 1973, 241, 20-22.
    連結:
  3. 3. Ranganathan, R.; Madanmohan, S.; Kesavan, A.; Baskar, G.; Krishnamoorthy, Y. R.; Santosham, R.; Ponraju, D.; Rayala, S. K.; Venkatraman, G., Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine 2012, 7, 1043-60.
    連結:
  4. 4. Mahon, E.; Salvati, A.; Baldelli Bombelli, F.; Lynch, I.; Dawson, K. A., Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery". J Control Release 2012, 161 (2), 164-74.
    連結:
  5. 5. Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R., Biodegradable long-circulating polymeric nanospheres. Science 1994, 263 (5153), 1600-3.
    連結:
  6. 6. Dobrovolskaia, M. A.; Aggarwal, P.; Hall, J. B.; McNeil, S. E., Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 2008, 5 (4), 487-95.
    連結:
  7. 7. Kojima, C.; Cho, S.-H.; Higuchi, E., Gold nanoparticle-loaded PEGylated dendrimers for theragnosis. Research on Chemical Intermediates 2011, 38 (6), 1279-1289.
    連結:
  8. 8. Harada, A.; Yuzawa, A.; Kato, T.; Kojima, C.; Kono, K., Effect of pH and generation of dendron on single-step synthesis of gold nanoparticles using PEGylated polyamidoamine dendron in aqueous medium. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (6), 1391-1398.
    連結:
  9. 9. Chen, H.; Paholak, H.; Ito, M.; Sansanaphongpricha, K.; Qian, W.; Che, Y.; Sun, D., 'Living' PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities. Nanotechnology 2013, 24 (35), 355101.
    連結:
  10. 10. Raeesi, V.; Chou, L. Y.; Chan, W. C., Tuning the Drug Loading and Release of DNA-Assembled Gold-Nanorod Superstructures. Adv Mater 2016, 28 (38), 8511-8518.
    連結:
  11. 11. Larson, T. A.; Joshi, P. P.; Sokolov, K., Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 2012, 6 (10), 9182-90.
    連結:
  12. 13. Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D. T.; Xie, J., Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal Chem 2013, 85 (3), 1913-9.
    連結:
  13. 14. Choi, Y.; Kang, T.; Lee, L. P., Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett 2009, 9 (1), 85-90.
    連結:
  14. 15. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 1908, 330, 377-445.
    連結:
  15. 16. Choi, Y.; Park, Y.; Kang, T.; Lee, L. P., Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 2009, 4 (11), 742-6.
    連結:
  16. 17. Song, H. D.; Choi, I.; Yang, Y. I.; Hong, S.; Lee, S.; Kang, T.; Yi, J., Picomolar selective detection of mercuric ion (Hg(2+)) using a functionalized single plasmonic gold nanoparticle. Nanotechnology 2010, 21 (14), 145501.
    連結:
  17. 18. Hwang, W. S.; Truong, P. L.; Sim, S. J., Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition. Anal Biochem 2012, 421 (1), 213-8.
    連結:
  18. 19. Chou, L. Y.; Ming, K.; Chan, W. C., Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011, 40 (1), 233-45.
    連結:
  19. 20. Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X. J., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 2012, 4 (20), 6135-49.
    連結:
  20. 21. Yeh, Y. C.; Creran, B.; Rotello, V. M., Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4 (6), 1871-80.
    連結:
  21. 22. Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A., The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012, 41 (7), 2740-79.
    連結:
  22. 23. Hongzhuan Yin, L. L., Jun Fang, Enhanced Permeability and Retentio (EPR) Effect Based Tumor Targeting: The Concept,Application and Prospect. JSM Clin Oncol 2014, 2 (1), 1010-1014.
    連結:
  23. 24. Mieszawska, A. J.; Mulder, W. J.; Fayad, Z. A.; Cormode, D. P., Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013, 10 (3), 831-47.
    連結:
  24. 25. Yona, S.; Gordon, S., From the Reticuloendothelial to Mononuclear Phagocyte System - The Unaccounted Years. Front Immunol 2015, 6, 328.
    連結:
  25. 28. Saptarshi, S. R.; Duschl, A.; Lopata, A. L., Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 2013, 11, 26.
    連結:
  26. 29. Tomasetti, L.; Liebl, R.; Wastl, D. S.; Breunig, M., Influence of PEGylation on nanoparticle mobility in different models of the extracellular matrix. Eur J Pharm Biopharm 2016, 108, 145-155.
    連結:
  27. 30. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Aberg, C.; Mahon, E.; Dawson, K. A., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013, 8 (2), 137-43.
    連結:
  28. 31. Larson, T. A.; Joshi, P. R.; Sokolov, K., Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield. Acs Nano 2012, 6 (10), 9182-9190.
    連結:
  29. 32. Ding, Y.; Zhou, Y. Y.; Chen, H.; Geng, D. D.; Wu, D. Y.; Hong, J.; Shen, W. B.; Hang, T. J.; Zhang, C., The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials 2013, 34 (38), 10217-27.
    連結:
  30. 33. Winther, J. R.; Thorpe, C., Quantification of thiols and disulfides. Biochim Biophys Acta 2014, 1840 (2), 838-46.
    連結:
  31. 34. Kuwata, H.; Tamaru, H.; Esumi, K.; Miyano, K., Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Applied Physics Letters 2003, 83 (22), 4625-4627.
    連結:
  32. 35. Duyne, A. D. M. a. R. P. V., Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3 (8), 1057-1062.
    連結:
  33. 36. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G., Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294 (5548), 1901-3.
    連結:
  34. 37. Raschke, G. e. a., Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Lett 2003, 3, 935-938.
    連結:
  35. 38. Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y., Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 2005, 5 (10), 2034-8.
    連結:
  36. 39. Nehl, C. L.; Liao, H.; Hafner, J. H., Optical properties of star-shaped gold nanoparticles. Nano Lett 2006, 6 (4), 683-8.
    連結:
  37. 40. Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z. Y.; Ginger, D.; Xia, Y., Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 2007, 7 (4), 1032-6.
    連結:
  38. 41. Ofir, Y.; Samanta, B.; Rotello, V. M., Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 2008, 37 (9), 1814-25.
    連結:
  39. 42. Wang, S. H.; Lee, C. W.; Chiou, A.; Wei, P. K., Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology 2010, 8, 33.
    連結:
  40. 43. Sonnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P., Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 2002, 88 (7), 077402.
    連結:
  41. 12. L.Ellman, G., Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 1959, 82 (1), 70-77.
  42. 26. Aschoff, L., Das Reticuloendotheliale System. Erg Inn Med Kinderheilk 1924, 26, 1-118.
  43. 27. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013, 8 (10), 772-81.