英文摘要
|
Energy has been one of the most important issues in the world. With the progress of industry and technology, energy demand is increasing. Because the world's petrochemical related energy has gradually dried up, finding alternative energy has become an urgent challenge. The stocks of bioenergy are from biomass, and carbon dioxide (CO2) can be fixed during the growth of biomass through photosynthesis. Therefore, bioenergy can be a green energy source if the cost of manufacture can be
decreased.
This study discusses the biomass accumulation and productivity, oil content and productivity, and carbon emissions rate per units of lipid amount of two algae strains, SA and PA, under the cultivation parameters of T5 fluorescent lamp, LED light board, and aerated with air, 10% CO2 or 20% CO2. Analysis of lipid accumulation rate under different growth conditions can help to understand the optimal lipid accumulation condition and thereby increasing the lipid productivity. Furthermore, how to minimize the energy cost for producing bioenergy and maximize the productivity has become a major issue in the area of energy-saving with lower carbon impact. By analyzing the life cycle of chlorella, we can understand the energy consumption and carbon emissions during cultivation and extraction of oil consumed. In addition, whether using chlorella as a raw material for bioenergy will cause other ecological
impact or not is also the scope of this study.
We got the following results:(1) SA cultured at T5 fluorescent lamp with 10% CO2 could obtain higher biomass accumulation and productivity, lipid productivity and content of 1300±1 mg/L, 0.186±0 g/L-1/d-1, 80.15±0.2 mg/L-1/d-1, and 560.3±1.7 mg, respectively. PA cultured at LED light with 10% CO2 culture could obtain higher biomass accumulation and productivity, lipid productivity and content of 1335±7 mg/L, 0.191±7 g/L-1/d-1, 64.46±0.3 mg/L-1/d-1, and 451.23±6.4 mg, respectively. (2) SA cultured at T5 fluorescent lamp with air could obtain higher lipid ratio of 43.3±0.2%, while PA cultured at T5 fluorescent lamp with 20% CO2 obtained ratio of 49.5±1.2%. (3) SA can resulted in better lipid productivity and content, while PA can resulted in better biomass productivity and amount. (4) When we set up the goal as producing one unit (mg) of lipid in the life cycle assessment, the lowest values of carbon emission were both under the cultivation parameters of LED light and 10% CO2 for SA (0.7316 kg carbon), and PA (0.7351 kg carbon), respectively. Using LED than T5 as light source can save up to 41% of carbon emissions to produce algal lipid in this study.
|
参考文献
|
-
1. Chisti Y., Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126 (2008).
連結:
-
2. Gonzalez Lopez, C.V., F. G. Acien Fernandez, J. M. Femandez Sevilla, J. F. Sanchez Fernandez, M. C. Ceron Garcia, E. Molina Grima, Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes, Bioresour. Technol., 100, 5904 (2009).
連結:
-
3. Baroukh, C., R. Munoz-Tamayo, O. Bernard, J. P. Steyer, Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production, Curr. Opin. Biotechnol., 33, 198 (2015).
連結:
-
4. Seth, J. R. and P. P. Wangikar, Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery, Biotechnol. Bioeng., 112, 1281 (2015).
連結:
-
5. Chen, K. T., C. H. Cheng, Y. H. Wu, W. C. Lu, Y. H. Lin, H. T. Lee, Continuous lipid extraction of microalgae using high-pressure carbon dioxide, Bioresour. Technol., 146, 23 (2013).
連結:
-
6. GuschinaIA et al., Lipids and lipid metabolism in eukaryotic algae. 45(2):160-86 (2006).
連結:
-
8. Smith, V.H., Sturm, B.S.M., Noyelles, F.J., Billings, S.A., The
連結:
-
ecology of algal biodiesel production. Trends in Ecology and
連結:
-
Posewitz, Aquatic phototrophs: efficient alternatives to land-based
連結:
-
crops for biofuels, Curr. Opin. Biotechnol., 19, 235 (2008).
連結:
-
10. Choi, S. P., M. T. Nguyen, S. J. Sim, Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production, Bioresour. Technol., 101, 5330 (2010).
連結:
-
11. Campbell P. K., T. Beer, D. Batten, Life cycle assessment of biodiesel production from microalgae in ponds, Bioresour. Technol., 102, 50 (2011).
連結:
-
12. Eyley, S., D. Vandamme, S. Lama, G. Van den Mooter, K. Muylaert, W. Thielemans, CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals, Nanoscale, 7, 14413 (2015).
連結:
-
13. Tongprawhan, W., S. Srinuanpan, B. Cheirsilp, Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid, Bioresour. Technol. 170, 90 (2014).
連結:
-
15. 葉俊良,在光生化反應器中以二階段策略培養微藻生產油脂之研究,成功大學,化學工程系碩士論文(2006)。
連結:
-
17. Raven, P. H., Johnson, and G. B., Biology, McGraw-Hill, sixth edition (2002).
連結:
-
18. Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., Reduction of CO2 by a high-density culture of Chlorella sp. in asemicontinuous hotobioreactor. Bioresource Technology. 99, 3389-3396 (2008).
連結:
-
20. Izumo, A., Fujiwara, S., Oyama, Y., Satoh, A., Fujita, N., Nakamura, N.,Tsuzuki, M., Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Science. 172, 1138-1147 (2007).
連結:
-
21. Renaud, S. M. and Parry, D. L., Microalgae for Use in Tropical Aquaculture II. Effect of Salinity on Growth, Gross Chemical-Composition and Fatty-Acid Composition of three Species of Marine Microalgae. Journal of Applied Phycology. 6(3): 347-356 (1994).
連結:
-
22. Masojidek, J., Torzillo, G., Mass cultivation of fresh water microalgae. Encyclopedia of Ecology: 2226-35 (2008).
連結:
-
26. Mujtaba, G., Choi W., Lee, C.G., Lee K., Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology.123, 279-283 (2012).
連結:
-
27. Griffiths, M. J. & Hille, R. & Harrison, S. T. L., The effect of degree and timing of nitrogen limitation on lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol. 98, 6147–6159 (2014).
連結:
-
28. Yanming Wang, Heiko Rischer a, Niels T. Eriksen b, Marilyn G. Wiebe, Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids, Bioresource Technology 144 608–614 (2013).
連結:
-
29. Yi-Hung Yang, Worasaung Klintlhong, Chung-Sung Tan, Optimization of continuous lipid extraction from Chlorella vulgaris by CO2-expanded methanol for biodiesel production, Bioresource Technology 198 550–556 (2015).
連結:
-
30. 蘇純平,微藻類之生質能源開發,中原大學土木工程學系碩士論文(2010)。
連結:
-
31. Agusdinata DB, Life cycle assessment of potential biojet fuel production in the United States. 9133-43 (2011).
連結:
-
34. 賴仲威,探討二氧化碳與廢水對微藻油脂累積的影響,中原大學生物環境工程學系碩士論文(2013)。
連結:
-
35. 張哲瑋,不同條件下對小球藻生長與油脂累積之探討,中原大學土木工程學系碩士論文(2012)。
連結:
-
36. 謝景峯,螢光燈具生命週期評估之研究-以室內T5燈具為例,國立台北科技大學建築與設計研究所碩士論文(2011)。
連結:
-
38. 徐翠華,台灣地區太陽輻射及太陽能發電潛力之研究,國立臺灣師範大學,地理研究所碩士論文(2002)。
連結:
-
39. 謝誌鴻,微藻培養與微藻油脂生產之研究,國立成功大學化學工程學系博士論文(2009)。
連結:
-
41. J.C.M. Pires, M.C.M. Alvim-Ferraz, F.G. Martins, M. Simoes, Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept, Renewable and Sustainable Energy Reviews 16 3043–3053 (2012).
連結:
-
7. Demirbas, A., Demirbas, M.F., Importance of algae oil as a
-
source of biodiesel. Energy Conversion and Management. 52, 163-
-
170 (2010).
-
Evolution. 25, 301-309 (2010).
-
9. Dismukes, G. C., D. Carrieri, N. Bennette, G. M. Ananyev, M. C.
-
14. 潘忠政,整合鹼液吸收及光合作用以固定二氧化碳,大葉大學環境工程研究所碩士論文(2001)。
-
19. Sato, N., Tsuzuki M., Kawaguchi, A., Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of the CO2 concentration during growth. Biochimica et Biophysica Acta. 1633, 35- 42 (2003).
-
33. Becker, E.W., Microalgae, Biotechnology and Microbiology. Cambridge: Cambridge University Press (1994).
-
37. 胡憲倫等,綠色科技及其碳足跡之評估,財團法人中技社(2012)。
-
40. 李光中等,淺談利用微藻固定CO2實現碳減排,環保簡訊,第
-
16期。
|