题名

Cep170 於神經突之非中心體分佈及其促使神經突生長之研究

并列篇名

Cep170 localizes as non-centrosomal puncta along the neurite and promotes neurite elongation

作者

吳佳佳

关键词

微管 ; 神經 ; 細胞骨架 ; 微管相關蛋白 ; Cep170 ; microtubule ; neurons ; cytoskeleton ; microtubule-associated-proteins ; Cep170

期刊名称

交通大學生物科技學系學位論文

卷期/出版年月

2019年

学位类别

碩士

导师

黃兆祺

内容语文

英文

中文摘要

微管是神經中重要的一種細胞骨架,其參與了多種神經發育的進程。在過去的研究中,運用定量蛋白質體學在小鼠胚胎癌細胞進行神經分化的前後,進行微管相關蛋白質組研究。已經發現構成有絲分裂中心體一部分的中心體蛋白Cep170在神經元分化時的微管上表現出顯著增加。過度表現Cep170導致P19細胞衍生的神經元和小鼠海馬迴神經元中神經突的長度顯著增加,這表明Cep170參與神經內微管的調控。然而,我們仍無法確定Cep170對於神經型態發生過程的準確調控機制為何。在本研究中,我們試圖通過研究Cep170過度表現對微管細胞骨架的影響以及檢測內源性Cep170的定位來回答上述問題。我們發現過度表現Cep170導致分離的海馬神經元中軸突和樹突長度顯著增加。過度表現的Cep170沿著軸突和樹突形成非中心體斑點狀分布,並且在神經突的不同區域中顯示出形態的變化。此外,過度表現的Cep170富含在軸突末端,但在樹突末端並沒有相同的表現。此外,在海馬迴神經元中過度表現Cep170增加了微管聚合速率。我們還嘗試通過免疫熒光染色確定內源性Cep170在神經元中的定位。與過度表現的研究一致,內源性Cep170也沿著神經突形成非中心體斑點狀分布,在軸突末端具有顯著的聚集。我們的研究結果表明,Cep170在有絲分裂後細胞中所形成的非中心體斑點狀分布,與其對微管聚合速率的影響可能是促進神經突伸長的機制。

英文摘要

Microtubule is the major cytoskeleton in neurons and involved in numerous developmental processes. In a previous study, quantitative proteomics has been used to examine microtubule-associated proteomes in mouse embryonal carcinoma cells before and after neuronal differentiation. The centrosome protein Cep170, which made up part of the mitotic centrosome, has been found to exhibit a significant increase on microtubules upon neuronal differentiation. Overexpressing Cep170 caused a significant increase in neurite length in both P19 cell-derived neurons and mouse hippocampal neurons, suggesting that Cep170 is involved in the regulation of neuronal morphogenesis. However, the exact mechanism of Cep170 in controlling the morphogenetic process of neurons remain elusive. In this study, we attempt to answer the aforementioned question by studying the effect of Cep170 overexpression on microtubule cytoskeleton as well as examining the localization of endogenous Cep170. We discovered that overexpressing Cep170 causes a significant increase in both axon and dendrite length in dissociated hippocampal neurons. Overexpressed Cep170 localizes as non-centrosomal puncta along both axons and dendrites, and displays variation in morphology in different regions of the neurite. In addition, overexpressed Cep170 is enriched at axon but not dendrite tips. Furthermore, overexpressing Cep170 in hippocampal neurons increases the microtubule polymerization rate. We also attempted to determine the localization of the endogenous Cep170 in neurons by immunofluorescence staining. Consistent with the overexpression study, endogenous Cep170 also localizes as non-centrosomal puncta along the neurite with a significant enrichment at the axon tip. Our results suggest that Cep170 localizes as non-centrosomal puncta in post-mitotic cells and its effect on microtubule polymerization rate may be the mechanism in promoting neurite elongation.

主题分类 生物科技學院 > 生物科技學系暨研究所
生物農學 > 生物科學
参考文献
  1. Ahmad, F. and Baas, P. (1995). Microtubules released from the neuronal centrosome are transported into the axon. Journal of Cell Science, 108(8), 2761-2769.
  2. Andersen, J.S., Wilkinson, C.J., Mayor, T., Mortensen, P., Nigg, E.A., Mann, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 426, 570–574
  3. Armijo-Weingart, L. and Gallo, G. (2017). It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Molecular and Cellular Neuroscience, 84, 36-47.
  4. Baas, P. W., and Lin, S. (2011). Hooks and comets: The story of microtubule polarity orientation in the neuron. Developmental Neurobiology, 71(6), 403–418.
  5. Baas, P.W., and F.J. Ahmad. (1993). The transport properties of axonal microtubules establish their polarity orientation. Journal of Cell Biology, 120, 1427-1437.
  6. Ballif B.C., Rosenfeld J.A., Traylor R., Theisen A., Bader P.I., et al (2012 ). High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Human Genetics, 131(1), 145–156.
  7. Bärenz, F., Kschonsak, Y. T., Meyer, A., Jafarpour, A., Lorenz, H., & Hoffmann, I. (2018). Ccdc61 controls centrosomal localization of Cep170 and is required for spindle assembly and symmetry. Molecular Biology of the Cell, 29(26),
  8. Brandt, R. (2001). Cytoskeletal mechanisms of neuronal morphogenesis. Zoology, 104(3-4), 221-227.
  9. Conde, C., Caceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience, 10, 319–332.
  10. Cong, L., Ran, F., Cox, D., Lin, S., Barretto, R., & Habib, N. et al. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819-823.
  11. Dalvai, M., Loehr, J., Jacquet, K., Huard, C., Roques, C., & Herst, P. et al. (2015). A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells. Cell Reports, 13(3), 621-633.
  12. de Anda, F.C., Pollarolo, G., Da Silva, J.S., Camoletto, P.G., Feiguin, F., Dotti, C.G. (2005). Centrosome localization determines neuronal polarity. Nature, 436, 704–708.
  13. Dent, E. W., Kwiatkowski, A. V., Mebane, L. M., Philippar, U., Barzik, M., Rubinson, D. A., et al. (2007). Filopodia are required for cortical neurite initiation. Nature Cell Biology, 9, 1347–1359.
  14. Doench, J., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E., & Donovan, K. et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 34(2), 184-191.
  15. Dotti, C., Sullivan, C., & Banker, G. (1988). The establishment of polarity by hippocampal neurons in culture. The Journal Of Neuroscience, 8(4), 1454-1468.
  16. Dragestein, K. A., van Cappellen, W. A., van Haren, J., Tsibidis, G. D., Akhmanova, A., Knoch, T. A., … Galjart, N. (2008). Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. The Journal of Cell Biology, 180(4), 729–737.
  17. Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J., & Jasin, M. (1998). Gene Conversion Tracts from Double-Strand Break Repair in Mammalian Cells. Molecular And Cellular Biology, 18(1), 93-101.
  18. Frank, V., den Hollander, A.I., Bruchle, N.O., Zonneveld, M.N., Nurnberg, G., Becker, C., Du Bois, G., Kendziorra, H., Roosing, S., Senderek, J., Nurnberg, P., Cremers, F.P., Zerres, K., Bergmann, C. (2008). Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel–Gruber syndrome. Human Mutation, 29, 45–52
  19. Glotzer, M. (2009). The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nature Reviews Molecular Cell Biology, 10, 9–20
  20. Golsteyn, R. M., Mundt, K. E., Fry, A. M., & Nigg, E. A. (1995). Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. The Journal of Cell Biology, 129(6), 1617–1628.
  21. Goslin, K., & Banker, G. (1989). Experimental observations on the development of polarity by hippocampal neurons in culture. The Journal of Cell Biology, 108(4), 1507–1516.
  22. Götz, M., and Huttner, W. B. (2005). The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology, 6, 777–788.
  23. Green, J. A., and Mykytyn, K. (2014). Neuronal primary cilia: an underappreciated signaling and sensory organelle in the brain. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 39(1), 244–245.
  24. Guarguaglini, G., Duncan, P., Stierhof, Y., Holmström, T., Duensing, S., & Nigg, E. (2005). The Forkhead-associated Domain Protein Cep170 Interacts with Polo-like Kinase 1 and Serves as a Marker for Mature Centrioles. Molecular Biology Of The Cell, 16(3), 1095-1107.
  25. Haitjema, Anneke et al. (2015). “CHAPTER 6 Deficiency of the centrosomal protein CEP 170 is associated with microcephaly.”
  26. Hoogenraad, C. C., Akhmanova, A., Grosveld, F., De Zeeuw, C. I., and Galjart, N. (2000). Functional analysis of CLIP-115 and its binding to microtubules. Journal of Cell Science, 113, 2285-2297.
  27. Hoogenraad, C.C., Bradke, F. (2009). Control of neuronal polarity and plasticity—a renaissance for microtubules? Trends Cell Bioliogy, 19, 669–676.
  28. Hsu, P., Scott, D., Weinstein, J., Ran, F., Konermann, S., & Agarwala, V. et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827-832.
  29. Huang Han-Chiang, (2015). Overexpressed Cep170 localizes to acentrosomal puncta and promotes neurite outgrowth (Master dissertation). National Chiao Tung University, Taiwan.
  30. Jacobson C, Schnapp B and Banker GA. (2006). A change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon. Neuron, 49, 797–804.
  31. Jiang, K., and Akhmanova, A. (2011). Microtubule tip-interacting proteins: a view from both ends. Current Opinion in Cell Biology, 23(1), 94-101.
  32. Job, D., Valiron, O., and Oakley, B. (2003). Microtubule nucleation. Current Opinion in Cell Biology, 15(1), 111-117.
  33. Jones-Villeneuve, E. M., Rudnicki, M. A., Harris, J. F., & McBurney, M. W. (1983). Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Molecular and Cellular Biology, 3(12), 2271–2279.
  34. Jordan, M., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253-265.
  35. Kalil, K., and Dent, E. W. (2014). Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nature Review Neuroscience, 15, 7–18.
  36. Kim, J., Krishnaswami, S.R., Gleeson, J.G. (2008). CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Human Molecular Genetics, 17, 3796–3805.
  37. Kobayashi, N., and Mundel, P. (1998). A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Cnd Tissue Research, 291(2), 163-174.
  38. Kuijpers M. & Hoogenraad C. C. (2011). Centrosomes, microtubules and neuronal development. Molecular and Cellular Neuroscience, 48, 349–358
  39. Lasser, M., Tiber, J., & Lowery, L. A. (2018). The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Frontiers in Cellular Neuroscience, 12, 165.
  40. Lee J.E. and Gleeson J.G. (2011). Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Current Opinion in Neurology, 24, 98–105.
  41. Leitch, C.C., Zaghloul, N.A., Davis, E.E., Stoetzel, C., Diaz-Font, A., Rix, S., Alfadhel, M., Lewis, R.A., Eyaid, W., Banin, E., Dollfus, H., Beales, P.L., Badano, J.L., Katsanis, N. (2008). Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nature Genetics, 40, 443–448.
  42. Letourneau P. C. (1983). Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. The Journal of Cell Biology, 97(4), 963–973.
  43. Ligon, L. A., Shelly, S. S., Tokito, M., and Holzbaur, E. L. (2003). The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Molecular Biology of the Cell, 14, 1405-1417.
  44. Lukinavicius G., Reymond L., D’Este E., Masharina A., Gottfert F., Ta H. et al. (2014). Fluorogenic probes for live-cell imaging of the cytoskeleton. Nature Methods, 11, 731–733
  45. Miller, K. (1996). Tubulin transport in neurons. The Journal of Cell Biology, 133(6), 1355-1366.
  46. Mitchison, T., & Kirschner, M. (1988). Cytoskeletal dynamics and nerve growth. Neuron, 1(9), 761-772.
  47. Nakagawa, Y., Yamane, Y., Okanoue, T., Tsukita, S. (2001). Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Molecular Biology of the Cell, 12, 1687–1697
  48. Nakano, A., Kato, H., Watanabe, T., Min, K., Yamazaki, S., & Asano, Y. et al. (2010). AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation. Nature Cell Biology, 12(6), 583-590.
  49. Nakata T and Hirokawa N. (2003). Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. Journal of Cell Biology, 162, 1045–1055.
  50. Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., & Teo, S. et al. (2016). Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 533(7601), 125-129.
  51. Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L., and Bornens, M. (2000). The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. Journal of Cell Biology, 149, 317-330.
  52. Pierre, P., Scheel, J., Rickard, J., & Kreis, T. (1992). CLIP-170 links endocytic vesicles to microtubules. Cell, 70(6), 887-900.
  53. Poulain, F., and Sobel, A. (2010). The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Molecular and Cellular Neuroscience, 43(1), 15-32.
  54. Quach TT, Auvergnon N, Lerch J, Honnorat J, Khanna R, et al. (2016) Cytoskeleton and CRMPs in Neuronal Morphogenesis and Neurological Diseases: Potential Targets for New Therapies. Journal of Neurological Disorders, 4, 257.
  55. Rickard, J. (1990). Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. The Journal Of Cell Biology, 110(5), 1623-1633.
  56. Sakakibara, A., Ando, R., Sapir, T., & Tanaka, T. (2013). Microtubule dynamics in neuronal morphogenesis. Open Biology, 3(7), 130061.
  57. Schvartz T., Aloush N., Goliand I., Segal I., Nachmias D., Arbely E. et al. (2017) Direct fluorescent-dye labeling of alpha-tubulin in mammalian cells for live cell and superresolution imaging. Molecular Biology of the Cell 28, 2747–2756
  58. Shanske, A., Caride, D., Menasse-Palmer, L., Bogdanow, A., & Marion, R. (1997). Central nervous system anomalies in Seckel syndrome: Report of a new family and review of the literature. American Journal of Medical Genetics, 70(2), 155-158.
  59. Sharp, D.J., W. Yu, and P.W. Baas. (1995). Transport of dendritic microtubules establishes their non-uniform polarity orientation. Journal of Cell Biology, 130:93-103.
  60. Shi, S., Cheng, T., Jan, L., & Jan, Y. (2004). APC and GSK-3β are Involved in mPar3 Targeting to the Nascent Axon and Establishment of Neuronal Polarity. Current Biology, 14(22), 2025-2032.
  61. Shi, S., Jan, L., & Jan, Y. (2003). Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity. Cell, 112(1), 63-75.
  62. Stiess, M., Bradke, F. (2010). Neuronal polarization: the cytoskeleton leads the way. Developmental Neurobiology. 71, 430–444.
  63. Welburn, J. P., & Cheeseman, I. M. (2012). The microtubule-binding protein Cep170 promotes the targeting of the kinesin-13 depolymerase Kif2b to the mitotic spindle. Molecular Biology of the Cell, 23(24), 4786–4795.
  64. Witte, H., Neukirchen, D., and Bradke, F. (2008). Microtubule stabilization specifies initial neuronal polarization. Journal of Cell Biology, 180, 619–632.
  65. Yamamoto, H., Demura, T., Morita, M., Banker, G. A., Tanii, T., & Nakamura, S. (2012). Differential neurite outgrowth is required for axon specification by cultured hippocampal neurons. Journal of Neurochemistry, 123(6), 904–910.
  66. Yu, W., Ahmad, F. J., and Baas, P. W. (1994). Microtubule fragmentation and partitioning in the axon during collateral branch formation. Journal of Neuroscience, 14, 5872–5884.
  67. Zhang, W., Yang, S., Yang, M., Herrlinger, S., Shao, Q., & Collar, J. et al. (2019). Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nature Communications, 10(1).
  68. Zheng, Y., Wong, M.L., Alberts, B., Mitchison, T. (1995). Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature, 378, 578–583
  69. Zumbrunn, J., Kinoshita, K., Hyman, A. and Näthke, I. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Current Biology, 11(1), pp.44-49.