题名

皮秒時間解析紫外光激發真空紫外光探測雷射系統之發展建制

并列篇名

Developments of picosecond time-resolved UV-VUV pump-probe laser system

作者

鄧遠彬

关键词

真空紫外光雷射 ; 非線性光學 ; 激發探測 ; vacuum ultraviolet laser ; nonlinear optics ; pump-probe

期刊名称

交通大學分子科學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

曾建銘

内容语文

繁體中文

中文摘要

許多研究分子動態的實驗,都需要將樣品在儀器內游離(ionization)後才可進行分析。而相較於使用長波長雷射在強聚焦下多光子游離樣品,使用短波長的真空紫外光進行單光子游離為較軟性的游離方式,造成的碎片較少,在分析上較為便利,但是根據真空紫外光的光子能量高低,對於造成的碎片數量也會有影響,因此最好能根據欲研究的樣品選擇游離的真空紫外光波長。 本論文的主題即為探討如何在實驗室現有的條件下分別嘗試使用三倍頻、共振加強四波混成以及高階諧波生等非線性光學的方式產生不同波長的真空紫外光並投入皮秒時間解析的紫外光激發真空紫外光探測實驗中使用。

英文摘要

Numerous molecular dynamic researches need to ionize the sample in the instrument to analysis. Compare to multiphoton ionization (ionize the sample with longer wavelength laser under the tight focusing geometry), single photon ionization with vacuum ultraviolet laser is a relatively soft ionization source which causes less fragments and make it easier to analysis. But the amount of the fragments are also depend on the vacuum ultraviolet laser wavelength we used. So it would be better if we can adjust the vacuum ultraviolet laser wavelength depend on which sample we chose. The main topics of this thesis is to generate vacuum ultraviolet laser based on the instruments now available in the lab through nonlinear optics like frequency tripling, high order harmonic generation and resonance enhanced four wave mixing. And introduce them into the picosecond time-resolved UV-VUV pump-probe laser system.

主题分类 基礎與應用科學 > 化學
理學院 > 分子科學研究所
参考文献
  1. 2. Svelto, O., Principles of Lasers. fifth ed.; Springer US: 2010.
    連結:
  2. 3. Maiman, T. H., Optical and Microwave-Optical Experiments in Ruby. Physical Review Letters 1960, 4 (11), 564-566.
    連結:
  3. 4. Patel, C. K. N., Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Physical Review 1964, 136 (5A), A1187-A1193.
    連結:
  4. 5. Javan, A.; Bennett, W. R.; Herriott, D. R., Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture. Physical Review Letters 1961, 6 (3), 106-110.
    連結:
  5. 7. Brabec, T.; Krausz, F., Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics 2000, 72 (2), 545-591.
    連結:
  6. 9. Schäfer, F. P.; Schmidt, W.; Volze, J., ORGANIC DYE SOLUTION LASER. Applied Physics Letters 1966, 9 (8), 306-309.
    連結:
  7. 10. Sorokin, P. P.; Lankard, J. R., Stimulated Emission Observed from an Organic Dye, Chloro-aluminum Phthalocyanine. IBM Journal of Research and Development 1966, 10 (2), 162-163.
    連結:
  8. 11. Marowsky, G., Principles of Dye Laser Operation and Dye Laser Tuning Methods. Optica Acta: International Journal of Optics 1976, 23 (11), 855-872.
    連結:
  9. 12. Vanherzeele, H., Picosecond laser system continuously tunable in the 0.6–4-μm range. Appl. Opt. 1990, 29 (15), 2246-2258.
    連結:
  10. 13. Giordmaine, J. A.; Miller, R. C., TUNABLE COHERENT PARAMETRIC OSCILLATION IN LiNbO3 AT OPTICAL FREQUENCIES. Physical Review Letters 1965, 14 (24), 973-976.
    連結:
  11. 15. R. H. Lipson ; S. S. Dimov ; P. Wang ; Y. J. Shi ; D. M. Mao ; J., X. K. H.; Vanstone, VACUUM ULTRAVIOLET AND EXTREME ULTRAVIOLET LASERS: PRINCIPLES, INSTRUMENTATION, AND APPLICATIONS. Instrum Sci. Technol. 2000, 28 (2), 85-118.
    連結:
  12. 16. Van Bramer, S. E.; Johnston, M. V., Tunable, Coherent Vacuum Ultraviolet Radiation for Photoionization Mass Spectrometry. Applied Spectroscopy 1992, 46 (2), 255-261.
    連結:
  13. 18. Laufer, A. H.; Pirog, J. A.; McNesby, J. R., Effect of Temperature on the Vacuum Ultraviolet Transmittance of Lithium Fluoride, Calcium Fluoride, Barium Fluoride, and Sapphire*. J. Opt. Soc. Am. 1965, 55 (1), 64-66.
    連結:
  14. 19. 王政璿. 利用自製單光儀分離並產生波長118.2 奈米之皮秒真空紫外光雷射. 國立交通大學, 2014.
    連結:
  15. 20. Midwinter, J. E.; Warner, J., The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. British Journal of Applied Physics 1965, 16 (8), 1135.
    連結:
  16. 22. Yamanouchi, K.; Tsuchiya, S., Tunable vacuum ultraviolet laser spectroscopy: excited state dynamics of jet-cooled molecules and van der Waals complexes. Journal of Physics B: Atomic, Molecular and Optical Physics 1995, 28 (2), 133.
    連結:
  17. 23. Bjorklund, G. C., Effects of focusing on third-order nonlinear processes in isotropic media. Quantum Electronics, IEEE Journal of 1975, 11 (6), 287-296.
    連結:
  18. 25. Hilbig, R.; Hilber, G.; Lago, A.; Wolff, B.; Wallenstein, R. In Tunable Coherent VUV Radiation Generated by Nonlinear Optical Frequency Conversion in Gases, 1986; pp 48-57.
    連結:
  19. 26. Mahon, R.; McIlrath, T.; Myerscough, V.; Koopman, D. W., Third-harmonic generation in argon, krypton, and xenon: Bandwidth limitations in the vicinity of Lyman-α. Quantum Electronics, IEEE Journal of 1979, 15 (6), 444-451.
    連結:
  20. 27. Bideau-Mehu, A.; Guern, Y.; Abjean, R.; Johannin-Gilles, A., Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines. Journal of Quantitative Spectroscopy and Radiative Transfer 1981, 25 (5), 395-402.
    連結:
  21. 28. Leonard, P. J., Refractive indices, Verdet constants, and Polarizabilities of the inert gases. Atomic Data and Nuclear Data Tables 1974, 14 (1), 21-37.
    連結:
  22. 29. Krause, J. L.; Schafer, K. J.; Kulander, K. C., High-order harmonic generation from atoms and ions in the high intensity regime. Physical Review Letters 1992, 68 (24), 3535-3538.
    連結:
  23. 30. Schafer, K. J.; Yang, B.; DiMauro, L. F.; Kulander, K. C., Above threshold ionization beyond the high harmonic cutoff. Physical Review Letters 1993, 70 (11), 1599-1602.
    連結:
  24. 31. Krause, J. L.; Schafer, K. J.; Kulander, K. C., High-order harmonic generation from atoms and ions in the high intensity regime. Phys Rev Lett 1992, 68 (24), 3535-3538.
    連結:
  25. 32. Corkum, P. B., Plasma perspective on strong field multiphoton ionization. Phys Rev Lett 1993, 71 (13), 1994-1997.
    連結:
  26. 33. Gallmann, L.; Cirelli, C.; Keller, U., Attosecond Science: Recent Highlights and Future Trends. Annual Review of Physical Chemistry 2012, 63 (1), 447-469.
    連結:
  27. 35. VonDrasek, W. A.; Okajima, S.; Hessler, J. P., Efficient monochromator to isolate VUV light generated by four-wave mixing techniques. Appl. Opt. 1988, 27 (19), 4057-4061.
    連結:
  28. 37. Loewen, E. G.; Nevière, M.; Maystre, D., Grating efficiency theory as it applies to blazed and holographic gratings. Appl. Opt. 1977, 16 (10), 2711-2721.
    連結:
  29. 38. Rao, C. V. S.; Shankara Joisa, Y.; Hansalia, C. J.; Hui, A. K.; Paul, R.; Ranjan, P., Vacuum photodiode detectors for broadband vacuum ultraviolet detection in the Saha Institute of Nuclear Physics Tokamak. Review of Scientific Instruments 1997, 68 (2), 1142-1148.
    連結:
  30. 39. FABEL, G. W.; COX, S. M.; LICHTMAN, D., PHOTODESORPTION FROM 304 STAINLESS STEEL. SURFACE SClENCE 1973, 40 (3), 571-582.
    連結:
  31. 40. Merritt, P. H.; Albertine, J. R., Beam control for high-energy laser devices. Optical Engineering 2012, 52 (2), 021005-1-021005-10.
    連結:
  32. 41. Lockyer, N. P.; Vickerman, J. C., Single photon ionisation mass spectrometry using laser-generated vacuum ultraviolet photons. Laser Chemistry 1997, 17, 139-160.
    連結:
  33. 42. Zhou, G.; Alfrey, A. J.; Casperson, L. W., Modes of a laser resonator with a retroreflecting corner cube mirror. Appl. Opt. 1982, 21 (9), 1670-1674.
    連結:
  34. 43. Lompré, L. A.; L’Huillier, A.; Ferray, M.; Monot, P.; Mainfray, G.; Manus, C., High-order harmonic generation in xenon: intensity and propagation effects. J. Opt. Soc. Am. B 1990, 7 (5), 754-761.
    連結:
  35. 44. Laulainen, J.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O., Photoelectron emission from metal surfaces induced by VUV-emission of filament driven hydrogen arc discharge plasma. AIP Conference Proceedings 2015, 1655 (1), 020007.
    連結:
  36. 45. Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A., A new broadly tunable (7.4–10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry. International Journal of Mass Spectrometry 2009, 279 (2–3), 134-146.
    連結:
  37. 46. Nash, D. G.; Liu, X. F.; Mysak, E. R.; Baer, T., Aerosol particle mass spectrometry with low photon energy laser ionization. International Journal of Mass Spectrometry 2005, 241 (2–3), 89-97.
    連結:
  38. 47. Marangos, J. P.; Shen, N.; Ma, H.; Hutchinson, M. H. R.; Connerade, J. P., Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum–difference frequency mixing in krypton. J. Opt. Soc. Am. B 1990, 7 (7), 1254-1259.
    連結:
  39. 48. Tsukiyama, K.; Tsukakoshi, M.; Kasuya, T., Polarization properties of the coherent radiation generated by four-wave mixing in Hg. Optics Communications 1991, 81 (5), 327-330.
    連結:
  40. 51. Leitner, T.; Sorokin, A. A.; Gaudin, J.; Kaser, H.; Kroth, U.; Tiedtke, K.; Richter, M.; Ph, W., Shot-to-shot and average absolute photon flux measurements of a femtosecond laser high-order harmonic photon source. New Journal of Physics 2011, 13 (9), 093003.
    連結:
  41. 52. Saito, T.; Katori, K.; Onuki, H., Characteristics of semiconductor photodiodes in the VUV region. Physica Scripta 1990, 41 (6), 783.
    連結:
  42. 53. Jovanovic, I.; Shverdin, M.; Gibson, D.; Brown, C., High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays. United States. Dept. of Energy. ;: Washington, D.C. :, 2007.
    連結:
  43. 55. Cerny, P.; Jelinkova, H.; Miyagi, M.; Basiev, T. T.; Zverev, P. G. In Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18um spectral region, 2002; pp 108-118.
    連結:
  44. 57. TIAN Ce-Chan, W. F.-Q., SUN Tao-Heng, The Generation of Tunable Coherent XUV/VUV Radiations in Inert Gases. SCIENCE CHINA Mathematics 1994, 37 (6), 718-729.
    連結:
  45. 58. Lago, A.; Chen, C.; Fan, Y.; Byer, R.; Wallenstein, R., Coherent 70.9-nm radiation generated in neon by frequency tripling the fifth harmonic of a Nd: YAG laser. Opt. Lett. 1988, 13 (3), 221-223
    連結:
  46. 1. WEINER, A. M., Ultrafast optics. 1 ed.; John Wiley & Sons, Inc: 2009.
  47. 6. Hall, R. N.; Fenner, G. E.; Kingsley, J. D.; Soltys, T. J.; Carlson, R. O., Coherent Light Emission From GaAs Junctions. Physical Review Letters 1962, 9 (9), 366-368.
  48. 8. Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G., Generation of Optical Harmonics. Physical Review Letters 1961, 7 (4), 118-119.
  49. 14. Fu, L. Infrared Spectra of Methanethiol Clusters (CH3SH)n Investigated with the Infrared Depletion and Vacuum-ultraviolet Ionization Technique. National Chiao Tung University, 2012.
  50. 17. Aka, G.; Bloch, L.; Benitez, J. M.; Crochet, P.; Kahn-Harari, A.; Vivien, D.; Salin, F.; Coquelin, P.; Colin, D. E. D. P. S.; Pollack, C. In A new non linear oxoborate crystal, characterized by using femtosecond broadband pulses, Advanced Solid State Lasers, San Francisco, California, 1996/01/31; Optical Society of America: San Francisco, California, 1996; p FC1.
  51. 21. Forysinski, P. W. A new photoelectron/photoion spectrometer for the characterisation of molecules and clusters using XUV and UV radiation. Text, 2011.
  52. 24. Gouy, L. G., Sur une propri´et´e nouvelle des ondes lumineuses. Comptes Rendus hebdomadaires des S´eances de l’Acad´emie des Sciences 1890, 110, 1251–1253.
  53. 34. Ishikawa, K. L., High-Harmonic Generation. In Advances in Solid State Lasers Development and Applications, Grishin, M., Ed. InTech: 2010.
  54. 36. Palmer, C., DIFFRACTION GRATING HANDBOOK. 6 ed.; Newport Corporation: 2005.
  55. 49. Sulc, J.; Jelínková, H.; Jabczynski, J. K.; Zendzian, W.; Kwiatkowski, J.; Nejezchleb, K.; Skoda, V. In Comparison of diode-side-pumped triangular Nd: YAG and Nd: YAP laser, Lasers and Applications in Science and Engineering, International Society for Optics and Photonics: 2005; pp 325-334.
  56. 50. Han, H.-L. Applications of Frontier Infrared Spectroscopy: І. Infrared-Vacuum Ultraviolet Photoionization Studies on Methanol Clusters and CH3S Radicals ІІ. IR Elecro-Absorption Spectral Studies on DMANB and PMMA. National Chiao Tung University, 2011.
  57. 54. Grubb, M. P. Roaming in the Dark: Deciphering the Mystery of NO3 à NO + O2 Photolysis. Texas A&M University, 2012.
  58. 56. Shverdin, M. Y.; Jovanovic, I.; Semenov, V. A.; Betts, S. M.; Brown, C.; Gibson, D. J.; Shuttlesworth, R. M.; Hartemann, F. V.; Siders, C. W.; Barty, C. P. J., High-power picosecond laser pulse recirculation. Opt. Lett. 2010, 35 (13), 2224-2226.