题名

基於樸素貝氏分類器採用FPGA之即時與低記憶體之多人臉偵測系統設計

并列篇名

Real-time and Low-memory Multi-face Detection System Design based on Naive Bayes Classifier using FPGA

作者

劉忠賢

关键词

樸素貝氏分類器 ; 人臉偵測 ; 可程式邏輯閘陣列 ; Naive Bayes Classifier ; Face Detection ; FPGA

期刊名称

交通大學電機與控制工程系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳永平

内容语文

英文

中文摘要

近年來人臉偵測被廣泛應用於各領域中,如人臉識別,圖像聚焦,和監視系統等。本論文提出一個以樸素貝氏分類器為基礎採用FPGA的即時人臉偵測系統,分為特徵擷取、候選人臉偵測、誤判消除三個部分。首先以影像金字塔(Image Pyramid)的方式同步縮小並對每個圖片擷取局部二值圖像特徵;接著局部二值圖像特徵經過樸素貝氏分類器找出候選人臉,最後,利用膚色過濾與重疊人臉消除,去除誤判。偵測結果以VGA形式輸出至螢幕上。 本論文實現人臉偵測系統於FPGA上,由於FPGA平行化處理的特性,在640480解析度下,一張影像的人臉偵測僅需16.7毫秒。且使改良過的局部二值圖像特徵,相對於哈爾特徵(Haar-like features),可以節省約140倍的記憶體使用量,論文所提及之即時人臉偵測系統確實具有成效,可達九成五以上之辨識率。

英文摘要

In recent years, face detection is widely used in various fields, such as face recognition, image focusing, and surveillance systems. This thesis proposes a real-time face detection system based on naive Bayesian classifier using FPGA. The system divided into three main parts, feature extraction, candidates face detection, and false elimination. First downscale the image to the image pyramid and extract local binary image features from each downscaling image; then features go through the naive Bayesian classifier to identify candidate faces. Finally, use skin color filter and face overlapping elimination to remove false positives. Detection results output to the monitor in VGA. In this thesis, face detection system to implement in FPGA. As a result of the FPGA parallel processing, in 640480 resolutions, the face detection of an image executes within 16.7 milliseconds. And the improved local binary features, compared to Haar features, save around 140 times the amount of memory. The experimental results show that the accuracy rate is higher than 95% in face detection, which implies the proposed real-time detection system is indeed effective and efficient.

主题分类 電機學院 > 電機與控制工程系所
工程學 > 電機工程
参考文献
  1. [1] Z. Zhang, D. Yi, Z. Lei, and S. Z. Li, “Regularized Transfer Boosting for Face Detection Across Spectrum,” IEEE Signal Processing Letters, vol. 19, no. 3, pp.131-134, 2012.
    連結:
  2. [2] B. Jun, I. Choi, and D. Kim, “Local Transform Features and Hybridization for Accurate Face and Human Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp.1423-1436, 2013.
    連結:
  3. [3] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers, M. Bonstra, V. Krzhova, and J. Zhang, “Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, 2009, pp.319-336.
    連結:
  4. [4] P. Viola and M. Jones, “Robust real-time face detection,” International Journal. of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
    連結:
  5. [6] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119-139, 1997.
    連結:
  6. [8] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51-59, 1996.
    連結:
  7. [10] D. D. Lewis, "Naive (Bayes) at forty: The independence assumption in information retrieval," in Proceedings of the 10th European Conference on Machine Learning(ECM'98), 1998, pp. 4-15.
    連結:
  8. [12] J. C. Terrillon, M. N. Shirazi, H. Fukamachi, and S. Akamatsu, “Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images,” in Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 54-61.
    連結:
  9. [15] S. Jin, D. Kim, T. T. Nguyen, D. Kim, M. Kim and J. W. Jeon, “Design and Implementation of a Pipelined Datapath for High-Speed Face Detection Using FPGA,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 158-167, 2012.
    連結:
  10. [18] F. Yang and M. Paindavoine, “Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification,” IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 1162-1175, 2003.
    連結:
  11. [19] C. Gao, S. l. l. Lu, T. Suh, and H. Lim, “Field programmable gate array-ased haar classifier for accelerating face detection algorithm,” IET Image Processing, vol. 4, no. 3, pp. 184-194, 2010.
    連結:
  12. [20] N. J. Wang, S. C. Chang, and P. J. Chou, “A real-time multi-face detection system implemented on FPGA,” in 2012 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2012, pp. 333-337.
    連結:
  13. [21] S. Jin, D. Kim, T. T. Nguyen, D. Kim, M. Kim and J. W. Jeon, “Design and Implementation of a Pipelined Datapath for High-Speed Face Detection Using FPGA,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 158-167, 2012.
    連結:
  14. [22] N. J. Wang, S. C. Chang, and P. J. Chou, “Real-time multi-face detection on FPGA for video surveillance applications,” Journal of the Chinese Institute of Engineers, vol. 38, no. 1, pp. 120-127.
    連結:
  15. [5] F. C. Crow, “Summed-area tables for texture mapping,” in Proceedings of the 11th annual conference on Computer graphics and interactive techniques (SIGGRAPH '84), vol. 18, no. 3, 1984, pp. 207-212.
  16. [7] D. Nguyen, D. Halupka, P. Aarabi, and A. Sheikholeslami, “Real-Time Face Detection and Lip Feature Extraction Using Field-Programmable Gate Arrays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 4, pp. 902-912, 2006.
  17. [9] C. Y. Cho, H. S. Chen, and J. S. Wang, “Smooth Quality Streaming With Bit-Plane Labelling,” in Visual Communications and Image Processing, International Society for Optics and Photonics, 2005, pp. 59606D-59606D.
  18. [11] V. Jain and E. G. Learned-Miller, “Fddb: A benchmark for face detection in unconstrained settings,” in UMass Amherst Technical Report, 2010
  19. [13] DE2-115 User Manual, “https://www.terasic.com.tw”
  20. [14] B. E. Bayer, “Color Imaging Array,” U.S. Patent 3 971 065, Jul. 20, 1976
  21. [16] D. J. Lilja and S. S. Sapatnekar, Designing digital computer systems with Verilog, 2004, Cambridge University Press.
  22. [17] S. Milborrow, J. Morkel, and F. Nicolls, “The MUCT landmarked face database,” in Pattern Recognition Association of South Africa, 2010.