题名

新穎的溶膠凝膠沈積法與電漿氧化生成技術應用於可撓式透明薄膜電晶體之研究

并列篇名

Novel Techniques of Sol-Gel Deposition and Plasma Oxidation Growth Treatment for Transparent Flexible Thin-Film Transistors

作者

朱銘清

关键词

薄膜電晶體 ; 液晶顯示器 ; 透明金屬氧化物半導體 ; 軟性電子 ; 溶膠-凝膠沈積技術 ; 電漿氧化生成技術 ; 氧化鋅薄膜電晶體 ; 氧化鋯高介電閘極介電層 ; Thin-film transistor ; liquid-crystal displays ; transparent metal-oxide semiconductors ; flexible electronics ; sol–gel deposition technique ; plasma oxidation growth treatment technique ; zinc oxide (ZnO) TFT ; zirconium dioxide (ZrO2) gate dielectric

期刊名称

交通大學奈米科技研究所學位論文

卷期/出版年月

2016年

学位类别

博士

导师

柯富祥

内容语文

英文

中文摘要

為了達到低成本、重量輕、面積大、功耗低和節能減碳的目標,新的顯示技術已經被薄膜電晶體液晶顯示器(Thin-Film Transistor Liquid-Crystal Displays, TFT-LCDs)所主宰。許多下一世代的顯示器技術,如:非晶矽(Amorphous-Silicon,α-Si)、低溫多晶矽(Low Temperature Poly-Silicon,LTPS)、以及透明金屬氧化物半導體(Transparent Metal-Oxide Semiconductors,TMOSs)等相繼被開發。同時,以各種物理與化學技術沈積具有透光性與可撓性的關鍵半導與閘極介電層體薄膜,亦廣泛地被研究。而在這些已被報導過的沈積技術中,以溶液生成薄膜的沈積方法備受各方矚目,因其具有製程簡單、化學成本低、產量高等優勢,大幅地提升了其於未來兼具高性能與低成本的軟性電子產品中的地位。然而,以溶膠-凝膠技術沈積而成的薄膜亦面臨著待解決的挑戰:提升超薄TMOSs的電荷載子密度,以及改善閘極介電層於多次彎曲測試下的可靠度特性。為了順利推動下一世代透明可撓式的顯示器,本論文致力於研發新穎的『溶膠-凝膠技術』與『電漿氧化生成技術』,並進一步將兩項技術結合,確實改善超薄氧化鋅薄膜的電荷載子密度,以及高介電閘極氧化層的可靠度。 首先,本研究著重於超薄(3.7 nm)、透明並且高品質的氧化鋅(Zinc Oxide,ZnO)薄膜,應用於TFT內作為載子傳輸的半導體層。此ZnO薄膜主要是以醋酸鋅溶膠-凝膠溶液所製成。在後續各種退火溫度條件下,300至700°C成功地製成了適當電性的TFT。然而,分別經過800與900°C的退火處理後,其電性特性明顯受到氧空缺的流失而退化。此n型ZnO TFT的電性特性如下所述:介於0.47至1.78 cm2/V-s的電荷遷移率,5.7 × 105 至1.6 × 106的開關電流比,以及9.7至17.3 V的臨限電壓範圍。接著對電荷遷移率與開關電流比作長達100天的可靠度測試,證實了此溶膠-凝膠技術製成的超薄ZnO TFT之有效性。接著我們進一步將『電漿氧化生成技術』結合於溶膠-凝膠技術製成的超薄ZnO TFT中,藉由電漿處理控制ZnO薄膜的電荷載子密度。電漿氧化生成效應解釋了臨限電壓的偏移以及載子遷移率的變異。而電漿與ZnO薄膜表面於分子等級的互相影響,以及薄膜的行為表徵,皆藉由X光光電子能譜術O 1s圖譜分析研究和證實。這個製程在缺陷和摻雜濃度的低階變動是十分敏感的。而氧電漿處理成功地致使了ZnO TFT開啟電壓的偏移,並降低了兩個數量及以上的漏電流。 另一方面,我們亦致力以『溶膠-凝膠技術』開發製程簡便與低成本的超薄氧化鋯(Zirconium Dioxide,ZrO2)高介電閘極介電層,旋轉塗布於可撓式塑膠軟板上,製成金屬-介電層-金屬(Metal-insulator-Metal,MIM)的電容元件。此ZrO2薄膜於適當的氧電漿處理後以250°C退火,此ZrO2電容於5 V偏壓下展現了極低的漏電流密度(9.0 × 10-9 A/cm2),而最大的電容密度於1 MHz時為13.3 fF/μm2 。此介電層性能的提升歸功於相對低溫且功率為30 W的氧電漿處理技術,成功地使溶膠-凝膠法製作的ZrO2薄膜完全地氧化。 本論文中結合了製程簡易與低成本的『溶膠-凝膠技術』與『電漿氧化生成技術』,成功地開發了高電荷載子密度的超薄氧化鋅薄膜,以及高可靠度的氧化鋯高介電閘極氧化層。此電漿氧化生成技術使溶膠-凝膠生成的ZnO與ZrO2薄膜成為於下一世代軟性電子中重點材料的候選人之一,以滿足生醫感測、發光二極體、以及可撓性面板日益增長的需求。

英文摘要

For the goal of low-cost, lightweight, large area, low power, energy efficiency and carbon reduction, the novel display technologies have been mostly dominated by thin-film transistor liquid-crystal displays (TFT-LCDs). Therefore, many next-generation displays such as amorphous-silicon (α-Si), low temperature poly-silicon (LTPS), and transparent metal-oxide semiconductors (TMOSs) TFT-LCDs have been widely developed. Meanwhile, various physical and chemical techniques are reported to deposit the critical semiconductor and gate dielectric layer with transparency and flexibility. Among these reported techniques, sol–gel derived thin-film deposition methods have been attracted lots of attention because of the simplicity, low chemical cost, and high throughput that enable the future fabrication of high-performance and low-cost electronics devices. However, sol–gel derived TFTs are facing numerous challenges, such as charge carrier density of ultra-thin TMOSs and reliability issue of gate dielectric under repeated bending test. To smoothly promote the next-generation displays with transparency and flexibility, this study has devoted to the development of novel techniques of sol–gel deposition and plasma oxidation growth treatment. A low-cost, utra-thin (3.7 nm), transparency and high-quality zinc oxide (ZnO) film was successfully demonstrated as the carrier transporting and semiconducting layer for TFT devices. The ZnO ultra-thin film was spin-coated from zinc acetate sol-gel solution. Among various processing temperatures, the electrical property of the fabricated TFT verified the devices could be successfully achieved from suitable annealing temperature of 300-700°C. However, the higher treatment temperature of 800-900°C deteriorated the transistor property due to the loss of oxygen vacancy. The electrical properties of these ZnO-based n-type TFTs were obtained as follows: the mobility (μsat) ranged from 0.47 to 1.78 cm2/V-s, the on/off current ratio ranged from 5.7 × 105 to 1.6 × 106, and the threshold voltage ranged from 9.7 to 17.3 V. The long-term (100 days) characterization for the evaluation of the ultra-thin ZnO TFT reliability on the mobility and on/off current ratio strongly suggested the effectiveness of solution-processed ultra-thin film transistors. Also, a change in the charge carrier density of ZnO films for control the functioning of TFTs has been studied by oxygen (O2) plasma techniques. This effect was interpreted in terms of a threshold voltage shift and the variation in carrier mobility. The plasma-surface interaction on the molecular level and the behavioral characterization of ZnO films were investigated by X-ray photospectroscopy of the O 1s region. This process was highly sensitive at low-level variations in defect and doping density. O2 plasma treatment leads to a shift of turn-on voltage and a reduction of the off current by more than two orders of magnitude in ZnO TFTs. In addition, a new flexible metal–insulator–metal (MIM) capacitor using 9.5-nm-thick ZrO2 film on a plastic polyimide substrate based on a simple and low-cost sol–gel precursor spin-coating process has been demonstrated. The as-deposited ZrO2 film under suitable treatment of O2 plasma and then subsequent annealing at 250°C exhibits superior low leakage current density of 9.0 × 10-9 A/cm2 at applied voltage of 5 V and maximum capacitance density of 13.3 fF/μm2 at 1 MHz. The as-deposited sol–gel film was completely oxidized when we employed O2 plasma at relatively low temperature and power (30 W), hence enhancing the electrical performance of the capacitor. This proposed efficient combination of sol–gel solution method and O2 plasma oxidation growth treatment to fabricate transparent ZnO and ZrO2 ultra-thin film was relatively simple and cost-effective technique, and could be used as a new candidate of material for next-generation electronic devices to meet the growing demand of small feature bioelectronic sensor, light emitting diode and flexible panel.

主题分类 工學院 > 奈米科技研究所
工程學 > 工程學總論
参考文献
  1. [1] Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, "All-Optical Modulation of a Graphene-Cladded Silicon Photonic Crystal Cavity," Acs Photonics, vol. 2, pp. 1513-1518, Nov 2015.
    連結:
  2. [2] A. Bobrovsky, A. Ryabchun, and V. Shibaev, "Liquid crystals photoalignment by films of side-chain azobenzene-containing polymers with different molecular structure," Journal of Photochemistry and Photobiology a-Chemistry, vol. 218, pp. 137-142, Feb 5 2011.
    連結:
  3. [3] K. K. Xu, Z. Y. Zhang, Q. Yu, and Z. Y. Wen, "Field-Effect Electroluminescence Spectra of Reverse-Biased PN Junctions in Silicon Device for Microdisplay," Journal of Display Technology, vol. 12, pp. 115-121, Feb 2016.
    連結:
  4. [4] T. Chen and L. M. Dai, "Macroscopic Graphene Fibers Directly Assembled from CVD-Grown Fiber-Shaped Hollow Graphene Tubes," Angewandte Chemie-International Edition, vol. 54, pp. 14947-14950, Dec 1 2015.
    連結:
  5. [5] D. U. Kim, J. S. Kim, and B. D. Choi, "A Low-Power Data Driving Method With Enhanced Charge Sharing Technique for Large-Screen LCD TVs," Journal of Display Technology, vol. 11, pp. 346-352, Apr 2015.
    連結:
  6. [6] S. H. Lee, J. Kim, S. H. Yoon, K. A. Kim, S. M. Yoon, C. Byun, et al., "Pixel Architecture for Low-Power Liquid Crystal Display Comprising Oxide and Ferroelectric Memory Thin Film Transistors," Ieee Electron Device Letters, vol. 36, pp. 585-587, Jun 2015.
    連結:
  7. [7] T. I. Lin, C. Y. Hsieh, I. Y. Li, and J. Leu, "Stress and stress relaxation behaviors of multi-layered polarizer structures under a reliability test condition characterized by use of a bending beam technique," Japanese Journal of Applied Physics, vol. 54, Apr 2015.
    連結:
  8. [8] P. Y. Yin, C. W. Lu, Y. H. Chen, H. C. Liang, and S. P. Tseng, "A 10-Bit Low-Power High-Color-Depth Column Driver With Two-Stage Multi-Channel RDACs for Small-Format TFT-LCD Driver ICs," Journal of Display Technology, vol. 11, pp. 1061-1068, Dec 2015.
    連結:
  9. [9] S. F. Liu, J. H. Cheng, Y. L. Lee, and F. R. Gau, "A case study on FMEA-based quality improvement of packaging designs in the TFT-LCD industry," Total Quality Management & Business Excellence, vol. 27, pp. 413-431, Mar 3 2016.
    連結:
  10. [10] C. Zuo, J. S. Sun, S. J. Feng, Y. Hu, and Q. Chen, "Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement," Optics and Lasers in Engineering, vol. 78, pp. 35-47, Mar 2016.
    連結:
  11. [11] A. Y. Jazi, S. Yoon, and J. J. Liu, "Automatic Grading of TFT-LCD Glass Substrates Using Optimized Support Vector Machines," Industrial & Engineering Chemistry Research, vol. 51, pp. 10887-10894, Aug 22 2012.
    連結:
  12. [12] D. Choi, Y. S. Kim, and Y. Son, "Recovery of indium tin oxide (ITO) and glass plate from discarded TFT-LCD panels using an electrochemical method and acid treatment," Rsc Advances, vol. 4, pp. 50975-50980, 2014.
    連結:
  13. [13] S. H. Lee, B. O. Kim, and J. H. Seo, "The Electrochemical Behavior of Mo-Ta Alloy in Phosphoric Acid Solution for TFT-LCD Application," Journal of Nanoscience and Nanotechnology, vol. 15, pp. 7770-7776, Oct 2015.
    連結:
  14. [15] Z. Y. Wang, D. X. Wang, Y. S. Zhang, Y. Y. Wang, and J. H. Yin, "Operating Characteristics Measurements and Current Transport Mechanism Analysis of Semi-Conductive Al Gate Thin Film Transistor," Ecs Journal of Solid State Science and Technology, vol. 4, pp. P63-P66, 2015.
    連結:
  15. [16] H. C. Lee, K. S. Chang-Liao, and Y. L. Li, "Improved reliability of large-sized a-Si thin-film-transistor by back channel treatment in H-2," Microelectronics Reliability, vol. 55, pp. 2178-2182, Nov 2015.
    連結:
  16. [17] C. H. Chiang and Y. M. Li, "Low Power and High Driving Capability of Amorphous Silicon Gate Driver Circuit," Journal of Display Technology, vol. 12, pp. 55-61, Jan 2016.
    連結:
  17. [18] T. Nakamura, M. Tada, and H. Kimura, "A 550-PPI LCD using 1.5 mu m channel width LTPS TFTs with low frame rate driving," Journal of the Society for Information Display, vol. 23, pp. 580-586, Dec 2015.
    連結:
  18. [19] X. Y. Gao, L. Lin, Y. C. Liu, and X. Q. Huang, "LTPS TFT Process on Polyimide Substrate for Flexible AMOLED," Journal of Display Technology, vol. 11, pp. 666-669, Aug 2015.
    連結:
  19. [20] J. H. Kim, D. H. Son, S. N. Park, D. H. Kim, S. J. Sung, E. A. Jung, et al., "Effects of Ti addition on sol-gel derived InO and InZnO thin film transistors," Current Applied Physics, vol. 12, pp. E24-E28, Sep 2012.
    連結:
  20. [21] D. S. Song, J. H. Kim, J. H. Jung, J. H. Bae, X. Zhang, J. H. Park, et al., "Influence of Gate Dielectric and Its Surface Treatment on Electrical Characteristics of Solution-Processed ZnO Transistors," Journal of Nanoscience and Nanotechnology, vol. 16, pp. 1848-1851, Feb 2016.
    連結:
  21. [22] A. K. Liang, M. Koniczek, L. E. Antonuk, Y. El-Mohri, Q. H. Zhao, R. A. Street, et al., "Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs," Physics in Medicine and Biology, vol. 61, pp. 1968-1985, Mar 7 2016.
    連結:
  22. [23] S. Jin, Y. Choe, S. Lee, T. W. Kim, M. Mativenga, and J. Jang, "Lateral Grain Growth of Amorphous Silicon Films With Wide Thickness Range by Blue Laser Annealing and Application to High Performance Poly-Si TFTs," Ieee Electron Device Letters, vol. 37, pp. 291-294, Mar 2016.
    連結:
  23. [24] E. K. H. Yu, R. Zhang, L. Bie, A. Kuo, and J. Kanicki, "Dynamic Response of a-InGaZnO and Amorphous Silicon Thin-Film Transistors for Ultra-High Definition Active-Matrix Liquid Crystal Displays," Journal of Display Technology, vol. 11, pp. 471-479, May 2015.
    連結:
  24. [25] N. A. Morrison, T. Stolley, U. Hermanns, A. Reus, T. Deppisch, H. Bolandi, et al., "An Overview of Process and Product Requirements for Next Generation Thin Film Electronics, Advanced Touch Panel Devices, and Ultra High Barriers," Proceedings of the Ieee, vol. 103, pp. 518-534, Apr 2015.
    連結:
  25. [26] W. C. Y. Ma and C. Y. Huang, "Bias temperature instability comparison of CMOS LTPS-TFTs with HfO2 gate dielectric," Solid-State Electronics, vol. 114, pp. 115-120, Dec 2015.
    連結:
  26. [27] H. S. Kim and K. Y. Han, "High-Linearity In-Pixel Thermal Sensor Using Low-Temperature Poly-Si Thin-Film Transistors," Ieee Sensors Journal, vol. 15, pp. 963-970, Feb 2015.
    連結:
  27. [28] E. Song and H. Nam, "Shoot-through current reduction scheme for low power LTPS TFT programmable shift register," Journal of the Society for Information Display, vol. 22, pp. 18-22, Jan 2014.
    連結:
  28. [29] M. Yamano, S. Kuroki, T. Sato, and K. Kotani, "High-performance poly-Si thin film transistors with highly biaxially oriented poly-Si thin films using double line beam continuous-wave laser lateral crystallization," Japanese Journal of Applied Physics, vol. 53, Mar 2014.
    連結:
  29. [30] W. C. Y. Ma, S. W. Yuan, T. C. Chan, and C. Y. Huang, "Threshold Voltage Reduction and Mobility Improvement of LTPS-TFTs With NH3 Plasma Treatment," Ieee Transactions on Plasma Science, vol. 42, pp. 3722-3725, Dec 2014.
    連結:
  30. [31] C. W. Byun, S. W. Son, Y. W. Lee, S. J. Yun, S. J. Lee, and S. K. Joo, "High Performance Poly-Si Thin Film Transistors Fabricated by Self-Aligned Seed Induced Lateral Crystallization," Electronic Materials Letters, vol. 7, pp. 297-301, Dec 2011.
    連結:
  31. [32] Y. L. Ding, L. Tian, Z. K. Huang, Q. Zhang, N. Wang, H. Wang, et al., "A novel current-biased voltage-programmed pixel circuit with low temperature polycrystalline silicon thin film transistors for AMOLED," Ieice Electronics Express, vol. 12, Dec 25 2015.
    連結:
  32. [33] C. L. Fan, Y. S. Lin, and Y. W. Liu, "Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes," Ieice Transactions on Electronics, vol. E93c, pp. 712-714, May 2010.
    連結:
  33. [34] C. L. Fan, F. P. Tseng, H. L. Lai, B. J. Sun, K. C. Chao, and Y. C. Chen, "A Novel LTPS-TFT Pixel Circuit to Compensate the Electronic Degradation for Active-Matrix Organic Light-Emitting Diode Displays," International Journal of Photoenergy, 2013.
    連結:
  34. [35] Y. J. Yun, B. G. Jun, Y. K. Kim, J. W. Lee, and Y. M. Lee, "Design of system-on-glass for poly-Si TFT OLEDs using mixed-signals simulation," Displays, vol. 30, pp. 17-22, Jan 2009.
    連結:
  35. [36] D. A. Fish, M. J. Childs, S. C. Deane, J. M. Shannon, W. A. Steer, N. D. Young, et al., "Improved optical feedback for OLED differential ageing correction," Journal of the Society for Information Display, vol. 13, pp. 131-138, Feb 2005.
    連結:
  36. [37] C. L. Lin, C. C. Hung, P. S. Chen, P. C. Lai, and M. H. Cheng, "New Voltage-Programmed AMOLED Pixel Circuit to Compensate for Nonuniform Electrical Characteristics of LTPS TFTs and Voltage Drop in Power Line," Ieee Transactions on Electron Devices, vol. 61, pp. 2454-2458, Jul 2014.
    連結:
  37. [38] Y. T. Lin, A. Purwidyantri, J. D. Luo, C. C. Chiou, C. M. Yang, C. H. Lo, et al., "Programming a nonvolatile memory-like sensor for KRAS gene sensing and signal enhancement," Biosensors & Bioelectronics, vol. 79, pp. 63-70, May 15 2016.
    連結:
  38. [40] H. G. Im, B. W. An, J. Jin, J. Jang, Y. G. Park, J. U. Park, et al., "A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels," Nanoscale, vol. 8, pp. 3916-3922, 2016.
    連結:
  39. [41] W. W. He and C. H. Ye, "Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review," Journal of Materials Science & Technology, vol. 31, pp. 581-588, Jun 2015.
    連結:
  40. [42] J. H. Lee, H. Lee, B. C. Huynh-Nguyen, E. Ko, J. H. Kim, and G. H. Seong, "Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide," Sensors and Actuators B-Chemical, vol. 224, pp. 789-797, Mar 1 2016.
    連結:
  41. [43] S. Bera, A. Haldar, M. Pal, S. Sarkar, R. Chakraborty, and S. Jana, "Zinc-indium-oxide sol-gel thin film: surface patterning, morphology and photocatalytic activity," Surface Engineering, vol. 31, pp. 492-501, Jul 2015.
    連結:
  42. [44] Y. H. Kim, J. S. Heo, T. H. Kim, S. Park, M. H. Yoon, J. Kim, et al., "Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films," Nature, vol. 489, pp. 128-32, Sep 6 2012.
    連結:
  43. [45] A. Amlouk, K. Boubaker, M. Bouhafs, and M. Amlouk, "Optimization of transparent conducting oxide ZnO compound thickness in terms of four alloys thermo-physical performance aggregates," Journal of Alloys and Compounds, vol. 509, pp. 3661-3666, Feb 24 2011.
    連結:
  44. [46] A. Mondal, N. Mukherjee, and S. K. Bhar, "Galvanic deposition of hexagonal ZnO thin films on TCO glass substrate," Materials Letters, vol. 60, pp. 1748-1752, Jun 2006.
    連結:
  45. [47] T. Saha, N. Q. Guo, and N. Ramakrishnan, "Zinc Oxide Nanostructure-Based Langasite Crystal Microbalance Ultraviolet Sensor," Ieee Sensors Journal, vol. 16, pp. 2964-2970, May 1 2016.
    連結:
  46. [49] S. K. Shaikh, S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, "Chemical bath deposited ZnO thin film based UV photoconductive detector," Journal of Alloys and Compounds, vol. 664, pp. 242-249, Apr 15 2016.
    連結:
  47. [50] R. G. Waykar, A. S. Pawbake, R. R. Kulkarni, A. A. Jadhavar, A. M. Funde, V. S. Waman, et al., "Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering," Journal of Materials Science-Materials in Electronics, vol. 27, pp. 1134-1143, Feb 2016.
    連結:
  48. [51] Y. S. Li, J. C. He, S. M. Hsu, C. C. Lee, D. Y. Su, F. Y. Tsai, et al., "Flexible Complementary Oxide-Semiconductor-Based Circuits Employing n-Channel ZnO and p-Channel SnO Thin-Film Transistors," Ieee Electron Device Letters, vol. 37, pp. 46-49, Jan 2016.
    連結:
  49. [52] K. Lee, J. H. Kim, and S. Im, "Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric," Applied Physics Letters, vol. 88, Jan 9 2006.
    連結:
  50. [53] D. Meljanac, K. Juraic, M. Plodinec, Z. Siketic, D. Gracin, N. Krstulovic, et al., "Influence of RF excitation during pulsed laser deposition in oxygen atmosphere on the structural properties and luminescence of nanocrystalline ZnO:Al thin films," Journal of Vacuum Science & Technology A, vol. 34, Mar 2016.
    連結:
  51. [54] M. Yilmaz, D. Tatar, E. Sonmez, C. Cirak, S. Aydogan, and R. Gunturkun, "Investigation of Structural, Morphological, Optical, and Electrical Properties of Al Doped ZnO Thin Films Via Spin Coating Technique," Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, vol. 46, pp. 489-494, Apr 2 2016.
    連結:
  52. [55] X. H. Jiang, J. J. Shi, M. Zhang, H. X. Zhong, P. Huang, Y. M. Ding, et al., "Breakthrough of the p-type doping bottleneck in ZnO by inserting an ultrathin ZnX (X = S, Se and Te) layer doped with N-X or Ag-Zn," Journal of Physics D-Applied Physics, vol. 49, Mar 9 2016.
    連結:
  53. [56] T. K. Pathak, V. Kumar, H. C. Swart, and L. P. Purohit, "Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films," Physica B-Condensed Matter, vol. 480, pp. 31-35, Jan 1 2016.
    連結:
  54. [57] M. M. Khalaf and A. A. Abdelhamid, "Sol-gel Derived Mixed Oxide Zirconia: Titania Green Heterogeneous Catalysts and Their Performance in Acridine Derivatives Synthesis," Catalysis Letters, vol. 146, pp. 645-655, Mar 2016.
    連結:
  55. [58] H. Lee, J. D. Liao, P. L. Shao, C. K. Yao, Y. H. Lin, and Y. D. Juang, "Sol-gel-based zirconia biocoatings on metal structurally enhanced by polyethylene glycol," Journal of Sol-Gel Science and Technology, vol. 77, pp. 574-584, Mar 2016.
    連結:
  56. [59] M. C. Chu, J. S. Meena, C. C. Cheng, H. C. You, F. C. Chang, and F. H. Ko, "Plasma-enhanced flexible metal-insulator-metal capacitor using high-k ZrO2 film as gate dielectric with improved reliability," Microelectronics Reliability, vol. 50, pp. 1098-1102, Aug 2010.
    連結:
  57. [60] C. H. Kao, H. Chen, C. C. Liu, C. Y. Chen, Y. T. Chen, and Y. C. Chu, "Electrical, material and multianalyte-sensitive characteristics of thermal CeO2/SiO2-stacked oxide capacitors," Thin Solid Films, vol. 570, pp. 552-557, Nov 3 2014.
    連結:
  58. [61] Y. H. Qin, H. J. Kwon, M. M. R. Howlader, and M. J. Deen, "Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges," Rsc Advances, vol. 5, pp. 69086-69109, 2015.
    連結:
  59. [62] Z. Y. Li, C. Leung, F. Gao, and Z. Y. Gu, "Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes," Sensors, vol. 15, pp. 22473-22489, Sep 2015.
    連結:
  60. [63] C. C. Wu, F. H. Ko, Y. S. Yang, D. L. Hsia, B. S. Lee, and T. S. Su, "Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor," Biosensors & Bioelectronics, vol. 25, pp. 820-825, Dec 15 2009.
    連結:
  61. [64] C. Y. Wu, H. Y. Cheng, K. L. Ou, and C. C. Wu, "Real-time sensing of hepatitis B virus X gene using an ultrasensitive nanowire field effect transistor," Journal of Polymer Engineering, vol. 34, pp. 273-277, May 2014.
    連結:
  62. [65] H. C. You, T. H. Hsu, F. H. Ko, J. W. Huang, and T. F. Lei, "Hafnium silicate nanocrystal memory using sol-gel-spin-coating method," Ieee Electron Device Letters, vol. 27, pp. 644-646, Aug 2006.
    連結:
  63. [66] C. C. Wu, F. H. Ko, W. L. Yang, H. C. You, F. K. Liu, C. C. Yeh, et al., "A Robust Data Retention Characteristic of Sol-Gel-Derived Nanocrystal Memory by Hot-Hole Trapping," Ieee Electron Device Letters, vol. 31, pp. 746-748, Jul 2010.
    連結:
  64. [68] X. L. Guo, H. Tabata, and T. Kawai, "Epitaxial growth and optoelectronic properties of nitrogen-doped ZnO films on (11(2)over-bar-0) Al2O3 substrate," Journal of Crystal Growth, vol. 237, pp. 544-547, Apr 2002.
    連結:
  65. [69] C. Wang, Z. G. Ji, J. H. Xi, J. Du, and Z. Z. Ye, "Fabrication and characteristics of the low-resistive p-type ZnO thin films by DC reactive magnetron sputtering," Materials Letters, vol. 60, pp. 912-914, Apr 2006.
    連結:
  66. [70] B. Wu, S. W. Zhuang, C. Chi, Z. F. Shi, J. Y. Jiang, X. Dong, et al., "The growth of ZnO on stainless steel foils by MOCVD and its application in light emitting devices," Physical Chemistry Chemical Physics, vol. 18, pp. 5614-5621, Feb 21 2016.
    連結:
  67. [71] S. W. Fu, H. J. Chen, H. T. Wu, K. T. Hung, and C. F. Shih, "Electrical and optical properties of Al:ZnO films prepared by ion-beam assisted sputtering," Ceramics International, vol. 42, pp. 2626-2633, Feb 1 2016.
    連結:
  68. [72] K. Ravichandran, K. Subha, N. Dineshbabu, and A. Manivasaham, "Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping," Journal of Alloys and Compounds, vol. 656, pp. 332-338, Jan 25 2016.
    連結:
  69. [73] J. Singh, S. Ranwa, J. Akhtar, and M. Kumar, "Growth of residual stress-free ZnO films on SiO2/Si substrate at room temperature for MEMS devices," Aip Advances, vol. 5, Jun 2015.
    連結:
  70. [74] A. K. Yadav, S. M. Haque, D. Shukla, R. J. Choudhary, S. N. Jha, and D. Bhattacharyya, "X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique," Aip Advances, vol. 5, Nov 2015.
    連結:
  71. [75] A. E. Oprea, L. M. Pandel, A. M. Dumitrescu, E. Andronescu, V. Grumezescu, M. C. Chifiriuc, et al., "Bioactive ZnO Coatings Deposited by MAPLE-An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces," Molecules, vol. 21, Feb 2016.
    連結:
  72. [76] A. Lyubchyk, A. Vicente, B. Soule, P. U. Alves, T. Mateus, M. J. Mendes, et al., "Mapping the Electrical Properties of ZnO-Based Transparent Conductive Oxides Grown at Room Temperature and Improved by Controlled Postdeposition Annealing," Advanced Electronic Materials, vol. 2, Jan 2016.
    連結:
  73. [77] Y. J. Jeong, T. K. An, D. J. Yun, L. H. Kim, S. Park, Y. Kim, et al., "Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters," Acs Applied Materials & Interfaces, vol. 8, pp. 5499-5508, Mar 2 2016.
    連結:
  74. [78] S. S. Lin and J. L. Huang, "The effect of thickness on the properties of heavily Al-doped ZnO films by simultaneous rf and dc magnetron sputtering," Ceramics International, vol. 30, pp. 497-501, 2004.
    連結:
  75. [79] S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, "Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition," Superlattices and Microstructures, vol. 39, pp. 306-313, Jan-Apr 2006.
    連結:
  76. [80] L. Y. Lin and D. E. Kim, "Effect of annealing temperature on the tribological behavior of ZnO films prepared by sol-gel method," Thin Solid Films, vol. 517, pp. 1690-1700, Jan 1 2009.
    連結:
  77. [81] H. H. Hsieh and C. C. Wu, "Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes," Applied Physics Letters, vol. 91, Jul 2 2007.
    連結:
  78. [82] L. Jiang, J. Zhang, D. Gamota, and C. G. Takoudis, "Enhancement of the field-effect mobility of solution processed organic thin film transistors by surface modification of the dielectric," Organic Electronics, vol. 11, pp. 344-350, Feb 2010.
    連結:
  79. [83] W. B. Jackson, R. L. Hoffman, and G. S. Herman, "High-performance flexible zinc tin oxide field-effect transistors," Applied Physics Letters, vol. 87, Nov 7 2005.
    連結:
  80. [84] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, "Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis," Applied Physics Letters, vol. 84, pp. 541-543, Jan 26 2004.
    連結:
  81. [85] J. H. Lee, K. H. Ko, and B. O. Park, "Electrical and optical properties of ZnO transparent conducting films by the sol-gel method," Journal of Crystal Growth, vol. 247, pp. 119-125, Jan 2003.
    連結:
  82. [86] Y. Zhang, D. D. Han, L. L. Huang, J. C. Dong, Y. Y. Cong, G. D. Cui, et al., "Sn-doped ZnO thin-film transistors with AZO, TZO and Al heterojunction source/drain contacts," Electronics Letters, vol. 52, pp. 302-303, Feb 18 2016.
    連結:
  83. [87] N. Hernandez-Como, A. Morales-Acevedo, M. Aleman, I. Mejia, and M. A. Quevedo-Lopez, "Al-doped ZnO thin films deposited by confocal sputtering as electrodes in ZnO-based thin-film transistors," Microelectronic Engineering, vol. 150, pp. 26-31, Jan 25 2016.
    連結:
  84. [88] F. M. Liu, C. Qian, J. Sun, P. Liu, Y. L. Huang, Y. L. Gao, et al., "Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300 degrees C," Applied Physics a-Materials Science & Processing, vol. 122, Apr 2016.
    連結:
  85. [89] M. A. Surabi, J. Chandradass, and S. J. Park, "ZnO-Based Thin Film Transistor Fabricated Using Radio Frequency Magnetron Sputtering at Low Temperature," Materials and Manufacturing Processes, vol. 30, pp. 175-178, Feb 1 2015.
    連結:
  86. [90] C. Sima, C. Grigoriu, O. Toma, and S. Antohe, "Study of dye sensitized solar cells based on ZnO photoelectrodes deposited by laser ablation and doctor blade methods," Thin Solid Films, vol. 597, pp. 206-211, Dec 31 2015.
    連結:
  87. [92] N. Yamamoto, H. Makino, S. Osone, A. Ujihara, T. Ito, H. Hokari, et al., "Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels," Thin Solid Films, vol. 520, pp. 4131-4138, Apr 2 2012.
    連結:
  88. [93] M. Morales-Masis, F. Dauzou, Q. Jeangros, A. Dabirian, H. Lifka, R. Gierth, et al., "An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide," Advanced Functional Materials, vol. 26, pp. 384-392, Jan 20 2016.
    連結:
  89. [94] J. Huang, I. Ichinose, T. Kunitake, and A. Nakao, "Preparation of nanoporous titania films by surface sol-gel process accompanied by low-temperature oxygen plasma treatment," Langmuir, vol. 18, pp. 9048-9053, Nov 12 2002.
    連結:
  90. [95] J. S. Meena, M. C. Chu, C. S. Wu, F. C. Chang, and F. H. Ko, "Highly reliable Si3N4-HfO2 stacked heterostructure to fully flexible poly-(3-hexylthiophene) thin-film transistor," Organic Electronics, vol. 12, pp. 1414-1421, Aug 2011.
    連結:
  91. [96] P. T. Liu, Y. T. Chou, and L. F. Teng, "Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress," Applied Physics Letters, vol. 95, Dec 7 2009.
    連結:
  92. [97] S. Walther, S. Polster, M. P. M. Jank, H. Thiem, H. Ryssel, and L. Frey, "Tuning of charge carrier density of ZnO nanoparticle films by oxygen plasma treatment," Advanced Powder Technology, vol. 22, pp. 253-256, Mar 2011.
    連結:
  93. [98] I. Abdel-Motaleb, N. Shetty, K. Leedy, and R. Cortez, "Investigation of the drain current shift in ZnO thin film transistors," Journal of Applied Physics, vol. 109, Jan 1 2011.
    連結:
  94. [99] C. G. Van de Walle, "Hydrogen as a cause of doping in zinc oxide," Physical Review Letters, vol. 85, pp. 1012-1015, Jul 31 2000.
    連結:
  95. [100] G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, "Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor," Journal of the Electrochemical Society, vol. 156, pp. H7-H9, 2009.
    連結:
  96. [101] J. Y. Choi, S. S. Kim, and S. Y. Lee, "Effect of hafnium addition on Zn-Sn-O thin film transistors fabricated by solution process," Applied Physics Letters, vol. 100, Jan 9 2012.
    連結:
  97. [102] P. K. Nayak, M. N. Hedhili, D. K. Cha, and H. N. Alshareef, "High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment," Applied Physics Letters, vol. 100, May 14 2012.
    連結:
  98. [103] Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Applied Physics Letters, vol. 85, pp. 5923-5925, Dec 13 2004.
    連結:
  99. [104] Y. G. Sun and J. A. Rogers, "Inorganic semiconductors for flexible electronics," Advanced Materials, vol. 19, pp. 1897-1916, Aug 3 2007.
    連結:
  100. [105] J. S. Meen, M. C. Chu, S. W. Kuo, F. C. Chang, and F. H. Ko, "Improved reliability from a plasma-assisted metal-insulator-metal capacitor comprising a high-k HfO2 film on a flexible polyimide substrate," Physical Chemistry Chemical Physics, vol. 12, pp. 2582-2589, 2010.
    連結:
  101. [106] J. M. Kim, J. W. Lee, J. K. Kim, B. K. Ju, J. S. Kim, Y. H. Lee, et al., "An organic thin-film transistor of high mobility by dielectric surface modification with organic molecule," Applied Physics Letters, vol. 85, pp. 6368-6370, Dec 27 2004.
    連結:
  102. [107] Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. J. Wang, M. Shim, et al., "Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates," Nature, vol. 454, pp. 495-U4, Jul 24 2008.
    連結:
  103. [108] M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, "Efficient large-area polymer solar cells on flexible substrates," Applied Physics Letters, vol. 85, pp. 1481-1483, Aug 30 2004.
    連結:
  104. [109] J. Oh, S. Shin, J. Park, G. Ham, and H. Jeon, "Characteristics of Al2O3/ZrO2 laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation," Thin Solid Films, vol. 599, pp. 119-124, Jan 29 2016.
    連結:
  105. [110] N. J. Ray, M. K. Hashemian, and E. G. Karpov, "A Stationary Reaction Current Effect in Mesoporous Pt/ZrO2 System Under H-2/O-2 Environment," Acs Applied Materials & Interfaces, vol. 7, pp. 27749-27754, Dec 23 2015.
    連結:
  106. [111] X. M. Song, Z. W. Liu, T. Suhonen, T. Varis, L. P. Huang, X. B. Zheng, et al., "Effect of melting state on the thermal shock resistance and thermal conductivity of APS ZrO2-7.5 wt.% Y2O3 coatings," Surface & Coatings Technology, vol. 270, pp. 132-138, May 25 2015.
    連結:
  107. [112] C. L. Ban, J. L. Hou, S. Q. Zhu, and C. Z. Wang, "Formation and properties of Al2O3-ZrO2 composite anodic oxide film on etched aluminum foil by electrodeposition and anodization," Journal of Materials Science-Materials in Electronics, vol. 27, pp. 1547-1552, Feb 2016.
    連結:
  108. [113] J. B. Chen, Z. Y. Cai, X. X. Chen, X. H. Zheng, and Y. Zheng, "Facile synthesis of ordered mesoporous CaO-ZrO2 composite with mild conditions," Materials Letters, vol. 168, pp. 214-217, Apr 1 2016.
    連結:
  109. [114] D. C. Shye, C. C. Hwang, M. J. Lai, C. C. Jaing, J. S. Chen, S. Huang, et al., "Effects of post-oxygen plasma treatment on Pt/(Ba,Sr)TiO3/Pt capacitors at low substrate temperatures," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 549-553, Feb 2003.
    連結:
  110. [115] H. C. You, K. Fu-Hsiang, and T. F. Lei, "Physical characterization and electrical properties of sol-gel-derived zirconia films," Journal of the Electrochemical Society, vol. 153, pp. F94-F99, 2006.
    連結:
  111. [116] M. N. U. Bhuyian, S. Poddar, D. Misra, K. Tapily, R. D. Clark, S. Consiglio, et al., "Impact of cyclic plasma treatment on oxygen vacancy defects in TiN/HfZrO/SiON/Si gate stacks," Applied Physics Letters, vol. 106, May 11 2015.
    連結:
  112. [117] S. Bang, S. Lee, S. Jeon, S. Kwon, W. Jeong, S. Kim, et al., "Physical and electrical properties of hafnium-zirconium-oxide films grown by atomic layer deposition," Journal of the Electrochemical Society, vol. 155, pp. H633-H637, 2008.
    連結:
  113. [118] K. Natori, D. Otani, and N. Sano, "Thickness dependence of the effective dielectric constant in a thin film capacitor," Applied Physics Letters, vol. 73, pp. 632-634, Aug 3 1998.
    連結:
  114. [119] C. C. Wu, Y. J. Tsai, M. C. Chu, S. M. Yang, F. H. Ko, P. L. Liu, et al., "Nanocrystallization and interfacial tension of sol-gel derived memory," Applied Physics Letters, vol. 92, Mar 24 2008.
    連結:
  115. [120] M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, "Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects," Physical Review B, vol. 63, Mar 15 2001.
    連結:
  116. Reference
  117. [14] T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, and D. L. Smith, "Channel formation in organic field-effect transistors," Journal of Applied Physics, vol. 91, pp. 4312-4318, Apr 1 2002.
  118. [39] J. J. Wang, S. R. Lin, C. H. Kao, C. H. Hu, and H. Chen, "Electrolyte-Insulator-Semiconductor (EIS) with Gd2O3-based Sensing Membrane for pH-Sensing Applications," Journal of New Materials for Electrochemical Systems, vol. 18, pp. 79-81, Apr 2015.
  119. [48] W. W. Qin, T. Li, Y. T. Li, J. W. Qiu, X. J. Ma, X. Q. Chen, et al., "A high power ZnO thin film piezoelectric generator," Applied Surface Science, vol. 364, pp. 670-675, Feb 28 2016.
  120. [67] R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol. 82, pp. 733-735, Feb 3 2003.
  121. [91] M. Todorova, W. X. Li, M. V. Ganduglia-Pirovano, C. Stampfl, K. Reuter, and M. Scheffler, "Role of subsurface oxygen in oxide formation at transition metal surfaces," Physical Review Letters, vol. 89, Aug 26 2002.