题名

智慧型日交易量建模與預測於台灣股票與期貨市場之研究

并列篇名

Intelligent Intra-daily Trading Volume Modeling and Prediction in the Taiwan Stock and Futures Markets

作者

王品媁

关键词

線性迴歸 ; 前饋式類神經網路 ; 倒傳遞類神經網路 ; 極速學習機 ; 穩健迴歸 ; 日交易量預測 ; 支援向量迴歸 ; Trading volume prediction ; Regression ; Artificial Neural Networks ; Extreme Learning ; Support Vector Machine

期刊名称

交通大學資訊管理研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳安斌;黃思皓

内容语文

繁體中文

中文摘要

價量關係與預測價格趨勢一直是學界與實務界所關切的議題,關於金融市場的研究大多數都在價格發現中求突破,或是探討交易量與價格之間的關係,鮮少針對交易量單獨做研究。因此本研究旨在探討日交易量建模與預測於台灣股票與期貨市場。本研究主要分為兩階段,第一階段為交易量預測模型實驗,目的是找出三種類神經網路方法與六種相異迴歸方法中預測誤差較低者,並與簡單統計線性迴歸做比較。第二階段為分群建模實驗,目的是探討三種依特徵因子分群後的預測模型之預測準確率是否比第一階段之未分群模型來的高。 實驗結果得出第一階段交易量預測模型實驗之預測誤差較簡單統計線性迴歸低,因此得證本研究之假設一:運用人工智慧與機器學習方法建模的模型比簡單的傳統線性迴歸模型預測準確率高。此外,第二階段實驗結果得出三種分群預測模型之預測準確率皆比未分群模型來的高,因此得證本研究之假設二:使用單一模型無法完全預測多變的金融市場,即日交易量的預測準確率將受限於歷史資料中的多數經驗,故用不同的因子將資料分群並建構各種市況下的多個預測模型。

英文摘要

The relationship between trading price and trading volume had been widely discussed by researchers and financial market practitioners. Traditional financial decision support system mostly focused on the market trend prediction and empirical tests between price and volume. This paper introduced an artificial intelligence system to model and predict the intra-daily trading volume in the Taiwan Stock and Futures Markets. We had implemented three different kinds of artificial neural networks and six regression models as the prediction kernels to substitute for simple linear regression model. In addition to the use of machine learning techniques, the clustering idea had also been applied to further improve the system performance. We found that the proposed trading volume forecasting model may outperform traditional approaches. The major contribution of this paper is to prove that the artificial intelligence and machine learning methods can represent the intra-daily volume changes better than simple linear regression. Moreover, the experimental results also show that the prediction can be further improved by three kinds of clustering model. It means that the adaptive model selection is required in this application to fit the complex and variant financial historical data. In summary, this paper proposed an effective trading volume prediction system based on various intelligent regression methods and clustering model.

主题分类 管理學院 > 資訊管理研究所
社會科學 > 管理學
参考文献
  1. [1]. 李惠妍, 吳宗正, & 溫敏杰. (2006). 迴歸模式與類神經網路在台股指數期貨預測之研究.
    連結:
  2. [3]. Epps, T. W., & Epps, M. L. (1976). The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distributions hypothesis. Econometrica: Journal of the Econometric Society, 305-321.
    連結:
  3. [4]. Tauchen, G. E., & Pitts, M. (1983). The price variability-volume relationship on speculative markets. Econometrica: Journal of the Econometric Society, 485-505.
    連結:
  4. [7]. Box, G. E., Jenkins, G. M., & Reinsel, G. C. (1976). Time series analysis: Forecastingand control. San Francisco: Holdenday.
    連結:
  5. [8]. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007.
    連結:
  6. [10]. Engle, R. F., & Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric reviews, 5(1), 1-50.
    連結:
  7. [13]. Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
    連結:
  8. [14]. Nalbantov, G., Bauer, R., & Sprinkhuizen-Kuyper, I. (2006). Equity style timing using support vector regressions. Applied financial economics, 16(15), 1095-1111.
    連結:
  9. [15]. Huang, S. C., & Wu, T. K. (2008). Integrating GA-based time-scale feature extractions with SVMs for stock index forecasting. Expert Systems with Applications, 35(4), 2080-2088.
    連結:
  10. [17]. Lin, K. P., & Pai, P. F. (2010). A fuzzy support vector regression model for business cycle predictions. Expert Systems with Applications, 37(7), 5430-5435.
    連結:
  11. [18]. Ying, C. C. (1966). Stock market prices and volumes of sales. Econometrica: Journal of the Econometric Society, 676-685.
    連結:
  12. [19]. Chen, G. M., Firth, M., & Rui, O. M. (2001). The dynamic relation between stock returns, trading volume, and volatility. Financial Review, 36(3), 153-174.
    連結:
  13. [20]. Chandrapala, P. (2011). The relationship between trading volume and stock returns. Journal of Competitiveness, 3(3).
    連結:
  14. [21]. Campbell, J. Y., Grossman, S. J., & Wang, J. (1992). Trading volume and serial correlation in stock returns (No. w4193). National Bureau of Economic Research.
    連結:
  15. [22]. Lee, B. S., & Rui, O. M. (2002). The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence. Journal of Banking & Finance, 26(1), 51-78.
    連結:
  16. [23]. Haykin, S. S. (2001). Neural networks: a comprehensive foundation. Tsinghua University Press.
    連結:
  17. [24]. Lippmann, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine, 4(2), 4-22.
    連結:
  18. [25]. 范正成, 張郁麟, 楊文仁, & 劉哲欣. (2006). 倒傳遞類神經網路應用於石門水庫懸浮固體濃度之即時分析與預測.
    連結:
  19. [26]. Tsou, K. W., Chang, Y. S., & Tu, C. H. (2006). A forecast of building destruction in earthquakes: Applications of artificial neural network. Journal of Housing Studies, 15(1), 21-41.
    連結:
  20. [27]. Baxt, W. G. (1990). Use of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion. Neural computation, 2(4), 480-489.
    連結:
  21. [28]. Chien, T. W., Lin, C., Tan, B., & Lee, W. C. (1999). A neural networks-based approach for strategic planning. Information & Management, 35(6), 357-364.
    連結:
  22. [33]. 歐宗殷. (2010). 資料探勘為基礎之零售業銷售預測模式-以連鎖超商鮮食商品為例. 
    連結:
  23. [34]. Liang, N. Y., Saratchandran, P., Huang, G. B., & Sundararajan, N. (2006). Classification of mental tasks from EEG signals using extreme learning machine. International journal of neural systems, 16(01), 29-38.
    連結:
  24. [35]. Sun, Z. L., Choi, T. M., Au, K. F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46(1), 411-419.
    連結:
  25. [36]. 林政弘. (2011). 結合整體經驗模態分解, 基因演算法與極速學習機於財務時間序列預測之研究. 臺北科技大學商業自動化與管理研究所學位論文, 1-74.
    連結:
  26. [2]. 股市投資人之風險承擔對投資決策因素之影響-以某證券公司高雄地區投資人為例. 2011.
  27. [5]. 台灣金融財務季刊 第二輯第二期(民國90年6月) 價量關係-台股指數期貨市場之研究
  28. [6]. 迴歸分析預測法- MBA智库百科http://goo.gl/Yo4mkM
  29. [9]. Le, V., & Zurbruegg, R. (2010). The role of trading volume in volatility forecasting. Journal of International Financial Markets, Institutions and Money, 20(5), 533-555.
  30. [11]. 楊踐為, 李家豪, & 類惠貞. 應用時間序列分析法建構台灣證券市場之預測交易模型. 
  31. [12]. 結合基因演算法與支持向量迴歸探討美國股市之價值溢價與規模溢價. 2013.
  32. [16]. Alvim, L. G., dos Santos, C. N., & Milidiu, R. L. (2010). Daily volume forecasting using high frequency predictors. In Proceedings of the 10th IASTED International Conference (Vol. 674, No. 047, p. 248).
  33. [29]. Chandra, N., & Reeb, D. M. (1999). Neural networks in a market efficiency context. American Business Review, 17(1), 39.
  34. [30]. 鄧世剛, 劉達明, &謝三良. (2011). 應用倒傳遞類神經網路於步槍射擊精準度預測.
  35. [31]. Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesús, O. (1996). Neural network design (Vol. 20). Boston: PWS publishing company.
  36. [32]. 段智懷,2004,「倒傳遞類神經網路小區域颱風降雨預報-前饋式與遞迴式之比較」,私立逢甲大學水利工程研究所碩士論文。