参考文献
|
-
Chapter 1
連結:
-
[1.1] Yan Lai, Nicolas Cordero and James C Greer, “Modelling of Sb Activation in Ultrashallow Junction Regions in Bulk and Strained Si,” MRS Proceedings, 1070, 1070-E03-05, 2008.
連結:
-
[1.2] J. C. Ho, R. Yerushalmi, G. Smith, P. Majhi, J. Bennett, J. Halim, V. N. Faifer, and A. Javey, “Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing,” Nano Letters, vol. 9, pp. 725-730, 2009.
連結:
-
[1.3] D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, “Implantation and transient B diffusion in Si: The source of the interstitials,” Appl. Phys. Lett. 65, 2305, 1994.
連結:
-
[1.4] N. E. B. Cowern, G. F. A. van de Walle, P. C. Zalm, and D. W. E. Vandenhoudt, “Mechanisms of implant damage annealing and transient enhanced diffusion in Si,” Appl. Phys. Lett. 65, 2981, 1994.
連結:
-
[1.5] P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, J. M. Poate, “Implantation and transient boron diffusion: the role of Si selfinterstitials,” Nucl. Instrum. Methods Phys. Res., Sect. B, 96, 187, 1995.
連結:
-
[1.6] Anil U. Mane, Jeffrey W. Elam, Alexander Goldberg, Thomas E. Seidel, Mathew D. Halls, Michael I. Current, Joseph Despres, Oleg Byl, Ying Tang and Joseph Sweeney, “Atomic layer deposition of boron-containing films using B2F4,” J. Vac. Sci. Technol. A 34(1), 01A132-1, 2016.
連結:
-
[1.7] W. Hei and H. Iwai, “On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology,” Microelectron. Eng. 138, 57, 2015.
連結:
-
[1.9] G. Fuse, M. Sugitani, H. Matsushita, H. Murooka, M. Kuriyama and M. Tanaka, “Momentum transfer implantation for sidewall doping of finFETs,” SSDM 2010, paper P-1-23-L.
連結:
-
[1.10] Y. Sasaki et al., “Improved sidewall doping of extensions by AsH3 ion assisted deposition and doping (IADD) with small implant angle for scaled NMOS Si bulk finFETs,” IEDM Tech. Dig., pp. 20.6.1 - 20.6.4, 2013.
連結:
-
[1.11] F. Sarubbi et al., “Chemical vapor deposition of α-Boron layers on silicon for controlled nanometer-deep p+n junction formation,” J. Elec Mat, vol. 39, no. 2, 2010.
連結:
-
[1.13] MacCrimmon, R.; Hautala, J.; Gwinn, M.; Sherman, S. “Gas cluster ion beam infusion processing of semiconductors,” Nucl. Instrum. Methods Phys. Res., Sect. B 2006, 242, 427–30.
連結:
-
[1.14] Yon, G. H.; Buh, G. H.; Park, T.; Hong, S. J.; Shin, Y. G.; Chung, U.; Moon, J. T. “Ultra Shallow Junction Formation Using Plasma Doping and Laser Annealing for Sub-65 nm Technology Nodes,” Jpn. J. Appl. Phys. 2006, 45, 2961–2964.
連結:
-
[1.15] T. L. Alford, D. C. Thompson, J. W. Mayer, N. D. Theodore, “Dopant activation in ion implanted silicon by MWA,”J. Appl. Phys., vol. 106, p. 114902, 2009.
連結:
-
[1.16] H. Zohm, E. Kasper, P. Mehringer, G. A. Muller, “Thermal processing of silicon wafers with microwave co-heating,”Microelectron. Eng., vol. 54, pp. 247-253, 2000.
連結:
-
[1.18] Y.-J. Lee, F.-K. Hsueh, S.-C. Huang, J. M. Kowalski, J. E. Kowalski, A. T. Y. Cheng, A. Koo, G.-L. Luo, and C.-Y. Wu, “A low-temperature microwave anneal process for boron-doped ultrathin Ge epilayer on Si substrate,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 123–125, Feb. 2009.
連結:
-
[1.19] Y.-L. Lu, F.-K. Hsueh, K.-C. Huang, T.-Y. Cheng, J. M. Kowalski, J. E. Kowalski, Y.-J. Lee, T.-S. Chao, and C.-Y. Wu, ”Nanoscale p-MOS Thin-Film Transistor With TiN Gate Electrode Fabricated by Low-Temperature Microwave Dopant Activation,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 417–439, May. 2010.
連結:
-
[1.20] F.-K. Hsueh, Y.-J. Lee, K.-L. Lin, M. I. Current, C.-Y. Wu, and T.-S. Chao, “Amorphous-Layer Regrowth and Activation of P and As Implanted Si by Low-Temperature Microwave Annealing,” IEEE Trans. Electron Devices, vol. 58, pp. 2088-2093, 2011.
連結:
-
[1.21] Y.-J. Lee, S.-S. Chuang, F.-K. Hsueh, H.-M. Lin, S.-C.Wu, C.-Y.Wu, and T.-Y. Tseng, “Dopant activation in single crystalline germanium by low temperature microwave annealing,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 194–196, Feb. 2011.
連結:
-
[1.22] J. H. Booske, R. F. Cooper, I. Dobson, “Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids,” J. Mater. Res., vol. 7, pp. 495-501, 1992.
連結:
-
[1.23] A. G. Whittaker, “Diffusion in Microwave-Heated Ceramics,” Chem. Mater., vol. 17, no. 13, pp. 3426 -3432, 2005.
連結:
-
[1.24] K. Thompson, Yogesh B. Gianchandani, John Booske, IEEE, and Reid F. Cooper, “Direct Si-Si Bonding by Electromagnetic Induction Heating,” J. MicroElectroMechanical Systems, vol. 11, no. 4, pp. 285-292, 2002.
連結:
-
[1.25] K. Thompson, J. H. Booske, Y. B. Gianchandani, and R. F. Cooper, “Electromagnetic Annealing for the 100 nm Technology Node,” IEEE Electron Device Lett., vol. 23, no. 3, pp. 127 – 129, 2002.
連結:
-
[1.26] K. Thompson, John H. Booske, Reid F. Cooper, and Yogesh B. Gianchandani, “Electromagnetic Fast-Firing for Ultra-Shallow Junction Formation,” IEEE Trans Semiconductor Manufacturing, vol. 16, no. 3, pp. 460-468, 2003.
連結:
-
[1.27] D. Stuerga, P. Gaillard, “Microwave Athermal Effects in Chemistry: A Myth's Autopsy.Part II: Orienting effects and thermodynamic consequences of electric field,” J. Microwave Power Electromangn. Energy, vol. 31, pp. 101-113, 1996.
連結:
-
[1.28] C. O. Kappe, “Controlled Microwave Heating in Modern Organic Synthesis,” Angew. Chem. Int. Ed., vol. 43, pp. 6250-6285, 2004.
連結:
-
[1.29] A. De la Hoz, A. Diaz-Ortiz, A. Moreno, “Microwaves In Organic Synthesis. Thermal and Non Thermal Microwave Effects,” Chem. Soc. Rev., pp. 164-178, 2005.
連結:
-
[1.30] J. H. Booske, R. F. Cooper, S. A. Freeman, “Microwave enhanced reaction kinetics in ceramics,” Mater. Res. Innovations, vol. 1, pp. 77-84, 1997.
連結:
-
[1.31] G. Robb, A. Harrison, A. G. Whittaker, “Temperature-resolved, in-situ powder X-ray diffraction of silver iodide under microwave irradiation,” Phys. Chem. Comm., pp. 135-137, 2002.
連結:
-
[1.32] S. A. Freeman, J. H. Booske, R. F. Cooper, “Modeling and numerical simulations of microwave-induced ionic transport,” J. Appl. Phys., vol. 83, p. 5761, 1998.
連結:
-
[1.34] J. H. Booske, R.F. Cooper, S.A. Freeman, K. Rybakov, and V. Semenov, “Microwave Ponderomotive Forces in Solid State Ionic Plasmas,” invited paper, Phys Plasmas, vol. 5, pp. 1664-1670, 1998.
連結:
-
[1.35] K. Thompson, J. H. Booske, R.L. Ives, J. Lohr, Y. Gorelov, K. Kajiwara, “Millisecond Microwave Annealing: Driving Micro-Electronics Nano,” Journal of Vacuum Science and Technology B, vol. 23, pp. 970-978, 2005.
連結:
-
[1.37] K. B. Blodgett, “Monomolecular Films of Fatty Acids on Glass,” J. Am. Chem. Soc., 56, 495-495, 1934.
連結:
-
[1.39] G. G. Roberts, Adv. Phys., vol. 34, 475-512, 1985.
連結:
-
[1.41] K. B. Blodgett, J. Am. Chem. Soc., 57, 1007-1022, 1935.
連結:
-
[1.42] A. Ulman, “An introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly,” Academic Press: Boston, 1991.
連結:
-
[1.43] D. R. Talham, Chem. Rev., 104, 5479-5501, 2004.
連結:
-
[1.46] J. Sagiv, J. Am. Chem. Soc., 102, 92-98, 1980.
連結:
-
[1.47] A. Ulman, Chem. Rev., 96, 1533-1554, 1996.
連結:
-
[1.49] P. S. Peercy, “The drive to miniaturization,” Nature 406, 1023–1026, 2000.
連結:
-
[1.50] C. Claeys, “Technological challenges of advanced CMOS processing and their impact on design aspects,” VLSI Design, 275–282, 2004.
連結:
-
[1.51] S. Xiong and J. Bokor, “A simulation study of gate line edge roughness effects on doping profiles of short-channel MOSFET devices,” IEEE Trans. Electron Devices 51, 228–232, 2004.
連結:
-
[1.52] E. C. Jones and E. Ishida, “Shallow junction doping technologies for ULSI,” Mater. Sci. Eng. 24, 1–80, 1998.
連結:
-
[1.53] Y. H. Song, K. Y. Kim, J.C. Bae, K. Kato, E. Arakawa, K. S. Kim, K. T. Park, H. Kurino and M. Koyanagi, “A novel atomic layer doping technology for ultra-shallow junction in sub-0.1 pm MOSFETs,” IEDM Tech. Dig., pp. 505–508, 1999.
連結:
-
[1.54] B. Kalkofen, M. Lisker and E. P. Burte, “Phosphorus diffusion into silicon after vapor phase surface adsorption of phosphine,” Mater. Sci. Eng. B 124–125, 288–292, 2005.
連結:
-
[1.55] C. R. Moon et al., “Application of plasma-doping technique to reduce dark current of CMOS image sensors,” IEEE Electron. Dev. Lett. 28, 114–116, 2007.
連結:
-
[1.56] Thomas E. Seidel, Alexander Goldberg, Mat D. Halls, and Michael I. Current, “Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs,” J. Vac. Sci. Technol. A 34, 01A150, 2016.
連結:
-
[1.59] J. C. Ho, R. Yerushalmi, Z. A. Jacobson, Z. Fan, R. L. Alley, and A. Javey, “Controlled nanoscale doping of semiconductors via molecular monolayers,” Nat. Materials, vol. 7, pp. 62-67, 2008.
連結:
-
[1.61] C. J. Sandroff, R. N. Nottenburg, J. C. Bichoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,”Appl. Phys. Lett. 51, 33, 1987.
連結:
-
[1.62] D. Y. Petrovykh, J. M. Sullivan, and L. J. Whitman, “Quantification of discrete oxide and sulfur layers on sulfur-passivated InAs by XPS,” Surf. Interface Anal. 37, 989, 2005.
連結:
-
[1.63] M. A. Filler and S. F. Bent, “The surface as molecular reagent: Organic chemistry at the semiconductor interface,” Prog. Surf. Sci. 73, 1–56, 2003.
連結:
-
[1.64] M. R. Linford and C. E. D. Chidsey, “Alkyl monolayers covalently bonded to silicon surfaces,” J. Am. Chem. Soc. 115, 12631–12632, 1993.
連結:
-
[1.65] L. J. Webb and N. S. Lewis, “Comparison of the electrical properties and chemical stability of crystalline silicon (111) surfaces alkylated using grignard reagents or olefins with Lewis acid catalysts,” J. Phys. Chem. B 107, 5404–5412, 2003.
連結:
-
[1.66] Jillian M. Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, Vol. 102, No. 5, 2002
連結:
-
[1.67] C. Chatgilialoglu, “Organosilanes as radical-based reducing agents in synthesis,”Acc. Chem. Res., 25, 188, 1992.
連結:
-
[2.1] International Technology Roadmap for Semiconductor, [Online]. Available: http://www.itrs2.net/
連結:
-
[2.2] D. K. Schroder, Semiconductor Material and Device Characterization. Hoboken, NJ :Wiley, 2006.
連結:
-
[2.3] Q. Zhang, J. Huang, N. Wu, G. Chen, M. Hong, L. K. Bera, and C. Zhu, “Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 728–730, Sep. 2006.
連結:
-
[2.4] A. T. Fiory, H.-J. Gossmann, C. Rafferty, P. Frisella, J. Hebb, and J. Jackson, “Ultra-shallow junctions and the effect of ramp-up rate during spike anneals in lamp-based and hot-walled RTP systems,” in Proc. Int. Conf. Ion Implantation Technol., Kyoto, Japan, pp. 22–25, Jun. 22–26, 1998.
連結:
-
[2.5] C. F. Nieh, K. C. Ku, C. H. Chen, H. Chang, L. T. Wang, L. P. Huang, Y. M. Sheu, C. C. Wang, T. L. Lee, S. C. Chen, M. S. Liang, and J. Gong, “Millisecond anneal and short-channel effect control in Si CMOS transistor performance,” IEEE Electron Device Lett., vol. 27, no. 12, pp. 969–971, Dec. 2006.
連結:
-
[2.8] F.-K. Hsueh, Y.-J. Lee, K.-L. Lin, M. I. Current, C.-Y. Wu, and T.-S. Chao, “Amorphous-Layer Regrowth and Activation of P and As Implanted Si by Low-Temperature Microwave Annealing,” IEEE Trans. Electron Devices, vol. 58, pp. 2088-2093, 2011.
連結:
-
[2.9] Y.-J. Lee, S.-S. Chuang, F.-K. Hsueh, H.-M. Lin, S.-C.Wu, C.-Y.Wu, and T.-Y. Tseng, “Dopant activation in single crystalline germanium by low temperature microwave annealing,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 194–196, Feb. 2011.
連結:
-
[2.11] T. Sato, “Spectral Emissivity of Silicon,” Jpn. J. Appl. Phys. 6:339, 1967.
連結:
-
[2.12] B. Sopori, W. Chen, J. Madjdpour and N. M. Ravindra, “Calculation of Emissivity of Si Wafers,” Journal of Electronic Materials, vol. 28, no. 12, 1999.
連結:
-
[3.1] Masanobu Saito, Takashi Yoshitomi, Hisashi Hara, Mizuki Ono, Yasushi Akasaka, “P-MOSFET’s with Ultra-Shallow Solid-Phase-Diffused Drain Structure Produced by Diffusion from BSG Gate-Sidewall,” IEEE Trans. Electron Devices, vol. 40, no. 12, pp. 2264-2272, 1993.
連結:
-
[3.2] Y. Kiyota, “Surface Reaction Doping using Gas Source for Ultra Shallow Junctions,” Junction Technology, pp. 19-22, 2000.
連結:
-
[3.3] P. G. Carey, T. W. Sigmon, R. L. Press, and T. S. Fahlen, “Ultra-Shallow High-Concentration Boron Profiles For CMOS Processing, ”IEEE Electron Device Lett., vol. 6, no. 6, 1985.
連結:
-
[3.4] J. Foggiato and W. S. Yoo, “Implementation of flash technology for ultra- shallow junction formation: Challenges in process integration,” J. Vac. Sci. Technol. B 24, 515, 2006.
連結:
-
[3.8] Y. Kiyaota, M. Matsushima, Y. Kaneto, M. Kanetomo, Y. Tamaki, K. Muraki and T. Inada, “Ultrashallow p‐type layer formation by rapid vapor‐phase doping using a lamp annealing apparatus,” Appl. Phys. Lett. vol. 64, pp. 910, 1994.
連結:
-
[3.9] Y. H. Song, K. Y. Kim, J.C. Bae, K. Kato, E. Arakawa, K. S. Kim, K. T. Park, H. Kurino and M. Koyanagi, “A Novel Atomic Layer Doping Technology for Ultra-shallow Junction in Sub-0.1 μm MOSFETs,” IEDM Tech. Dig., pp. 505, 1999
連結:
-
[3.10] P. S. Peercy, “The drive to miniaturization,” Nature , 406, 1023–1026, 2000.
連結:
-
[3.11] C. Claeys, “Technological challenges of advanced CMOS processing and their impact on design aspects,” VLSI Design, 275–282, 2004.
連結:
-
[3.12] J. C. Ho, R. Yerushalmi, Z. A. Jacobson, Z. Fan, R. L. Alley and A. Javey,“ Controlled nanoscale doping of semiconductors via molecular monolayers,” Nat. Materials, vol. 7, pp. 62-67, 2008.
連結:
-
[3.14] Y. L. Chen, C. A. Helm, and J. N. Israelachvili., “Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surfaces,” J. Phys. Chem. 1991, 95, 10736-10747
連結:
-
[3.15] M. Beebe, J. Bennett, J. Barnett, A. Berlin and T. Yoshinaka, “Quantifying residual and surface carbon using polyencapsulation SIMS,” Appl. Surf. Sci. 2004, 231-32, 716–19.
連結:
-
[3.16] J. C. Ho, R. Yerushalmi, G. Smith, P. Majhi, J. Bennett, J. Halim, V. N. Faifer, and A. Javey, “Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing,” Nano Letters, vol. 9, pp. 725-730, 2009.
連結:
-
[3.17] J. T. C. Chen, T. Dimitrova, D. Dimitrov, “A New Method for Mapping Ultra-Shallow Junction Leakage Currents,” International Workshop on IWJT, IEEE 2006, pp. 100-103.
連結:
-
[4.2] T.-H. Yu, Ethan Hsu, C.-W. Liu, J.-P. Colinge, Y.-M. Sheu, Jeff Wu, and C.H. Diaz, “Electrostatics and Ballistic Transport Studies in Junctionless Nanowire Transistors,” Proc. Int. Conf. SISPAD , pp.85 -88, 2013
連結:
-
[4.4] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and G. Slavcheva, “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1837–1852, Sep. 2003.
連結:
-
[4.7] Y.-J. Lee, T.-C. Cho, K.-H. Kao, P.-J. Sung, F.-K. Hsueh, P.-C. Huang, C.-T. Wu, S.-H. Hsu, W. -H. Huang, H.-C. Chen, Y. Li, M. I. Current, B. Hengstebeck, J. Marino, T. Büyüklimanli, J.-M. Shieh, T.-S. Chao, W.-F. Wu, and W.-K. Yeh, “A novel junctionless FinFET structure with sub-5 nm shell doping profile by molecular monolayer doping and microwave annealing,” IEDM Tech. Dig., 2014, pp. 32.7.1–32.7.4.
連結:
-
[4.9] A. Bentzen, G. Schubert, J. S. Christensen, B. G. Svensson and A. Holt, “Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing,” Prog. PhotoVoltaics 2007, 15, 281–289.
連結:
-
[4.10] M. Uematsu, “Simulation of boron, phosphorus, and arsenic diffusion in silicon based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism,” J. Appl. Phys. 1997, 82-5, 2229.
連結:
-
[4.12] U. Gösele, W. Frank, and A. Seeger, “Mechanism and kinetics of the diffusion of gold in silicon,” Appl. Phys. 23, 361, 1980.
連結:
-
[4.13] U. Gösele and F. Morehead, “Diffusion of zinc in gallium arsenide: A new model,” J. Appl. Phys. 52, 4617, 1981.
連結:
-
[4.14] N. E. B. Cowern, “General model for intrinsic dopant diffusion in silicon under nonequilibrium point‐defect conditions,” J. Appl. Phys. 64, 4484, 1988.
連結:
-
[4.15] C.-J. Su, T.-I Tsai, Y.-L. Liou, Z.-M. Lin, H.-C. Lin, and T.-S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 521–523, April 2011.
連結:
-
[4.16] H.-C. Lin, C.-I Lin, and T.-Y. Huang, “Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 53–55, January 2012.
連結:
-
[4.17] H.-C. Lin, C.-I Lin, Z.-M. Lin, B.-S. Shie, and Tiao-Yuan Huang, “Characteristics of Planar Junctionless Poly-Si Thin-Film Transistors With Various Channel Thickness,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1142-1148, 2013.
連結:
-
[5.2] Y.-J. Lee, T.-C. Cho, K.-H. Kao, P.-J. Sung, F.-K. Hsueh, P.-C. Huang, C.-T. Wu, S.-H. Hsu, W. -H. Huang, H.-C. Chen, Y. Li, M. I. Current, B. Hengstebeck, J. Marino, T. Büyüklimanli, J.-M. Shieh, T.-S. Chao, W.-F. Wu, and W.-K. Yeh, “A novel junctionless FinFET structure with sub-5 nm shell doping profile by molecular monolayer doping and microwave annealing,” in IEDM Tech. Dig., Dec. 2014, pp. 32.7.1–32.7.4.
連結:
-
[5.5] M. P. V. Kumar, C.-Y. Hu, K.-H. Kao, Y.-J. Lee, and T.-S. Chao, “Impact of the Shell Doping Profile on the Electrical Characteristics of Junctionless FETs,” IEEE Trans. Electron Devices, vol. 62, pp. 3541-3546, 2015.
連結:
-
[5.6] E. Machida, Y. Uraoka, T. Fuyuki, R. Kokawa, T. Ito and H. Ikenoue, “Characterization of local electrical properties of polycrystalline silicon thin films and hydrogen termination effect by conductive atomic force microscopy,” Appl. Phys. Lett. 94, 182104, 2009.
連結:
-
[5.7] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, F. Torregrosa, and D. Tsoukalas, “CO2 Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment,” IEEE Trans. Electron Devices, vol. 61, pp.696-701, 2014.
連結:
-
[5.8] D. Bäuerle, Laser Processing and Chemistry. New York, NY, USA: Springer-Verlag, 2011.
連結:
-
[5.9] J. Narayan, R. B. James, O. W. Holland, and M. J. Aziz, “Pulsed excimer and CO2 laser annealing of ion-implanted silicon,” J. Vac. Sci. Technol., vol. 3, no. 4, pp. 1836–1838, Jul. 1985.
連結:
-
[5.14] M.-S. Yeh, Y.-C. Wu, M.-H. Wu, Y.-R. Jhan, M.-H. Chung, and M.-F. Hung, “High performance ultra-thin body (2.4nm) poly-Si junctionless thin film transistors with a trench structure,” IEDM Tech. Dig., p. 26.6.1, 2014.
連結:
-
[5.15] H.-C. Lin, C.-I Lin, and T.-Y. Huang, “Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 53–55, January 2012.
連結:
-
[5.16] H.-C. Lin, C.-I Lin, Z.-M. Lin, B.-S. Shie, and Tiao-Yuan Huang, “Characteristics of Planar Junctionless Poly-Si Thin-Film Transistors With Various Channel Thickness,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1142-1148, 2013.
連結:
-
[6.1] Y. Tian, R. Huang, Y. Wang, J. Zhuge, R. Wang, J. Liu, X. Zhang, and Y. Wang, “New Self-Aligned Silicon Nanowire Transistors on Bulk Substrate Fabricated by Epi-Free Compatible CMOS Technology: Process Integration, Experimental Characterization of Carrier Transport and Low Frequency noise,” IEDM Tech. Dig., pp. 895 - 898, 2007.
連結:
-
[6.2] N. Singh, K. D. Buddharaju, S. K. Manhas, A. Agarwal, S. C. Rustagi, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, “Si, SiGe Nanowire Devices by Top–Down Technology and Their Applications,” IEEE Trans. Electron Device, vol. 55, no. 11, pp. 3107-3118, 2008.
連結:
-
[1.8] T. E. Seidel, M. D. Halls, A. Goldberg, J. W. Elam, A. Mane, and M. I. Current, “Atomic Layer Deposition of Dopants for Recoil Implantation in finFET Sidewalls,” 2014 20th International Conference on Ion Implantation Technology (IIT); p1-4, 2014
-
[1.12] Kawasaki, Y.; Kuroi, T.; Yamashita, T.; Horita, K.; Hayashi, T.; Ishibashi, M.; Togawa, M.; Ohno, Y.; Yoneda, M.; Horshy, T.; Jacobson, D.; Krull, W. “Ultra-shallow junction formation by B18H22 ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 2005, 237, 25–29.
-
[1.17] Y.-J. Lee, Y.-L. Lu, F.-K. Hsueh, K.-C. Huang, C.-C. Wan, T.-Y. Cheng, M.-H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H.-T. Chuang, Y. Li, T.-S. Chao, C.-Y. Wu, and F.-L. Yang, “3D 65 nm CMOS with 320 ◦C microwave dopant activation,” in IEDM Tech. Dig., pp. 31–34., 2009
-
[1.33] J. H. Booske, University of Wisconsin-Madison, USA, private communications, 2010.
-
[1.36] Y.-J. Lee, T.-C. Cho, S.-S. Chuang, F.-K. Hsueh, Y.-L. Lu, P.-J. Sung, H.-C. Chen, M. I. Current, T.-Y. Tseng, T.-S. Chao, Chenming Hu, and F.-L. Yang, “Low-temperature microwave annealing processes for future IC fabrication—A review,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 651–665, Mar. 2014.
-
[1.38] W. C. Bigelow, D. L. Pickett, W. A Zisman, J. Coll. Sci. Imp., 1, 513-538, 1946.
-
[1.40] Jurjen ter Maat, “Modification of inorganic surfaces with alkenes and alkynes,” 2012.
-
[1.44] J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, D. K. Schwartz, Science, 263, 1726-1733, 1994.
-
[1.45] J. J. Gun, R. Iscovici and J. Sagiv, J. Colloid Interf. Sci., 101, 201-213, 1984.
-
[1.48] M. R. Linord, P. Fenter, P. M. Eisenberger, C. E. D. Chidsey, J. Am. Chem. Soc., 117, 3145-3155, 1995.
-
[1.57] K.-W. Ang, J. Barnett, W.-Y. Loh, J. Huang, B.-G. Min, P. Y. Hung, I. Ok, J. H. Yum, G. Bersuker, M. Rodgers, V. Kaushik, S. Gausepohl, C. Hobbs, P. D. Kirsch, and R. Jammy, IEDM Tech. Dig., pp. 837, 2011.
-
[1.58] J. H. Yum, H. S. Shin, R. Hill, J. Oh, H. D. Lee, Ryan M. Mushinski, Todd W. Hudnall, C. W. Bielawski, S. K. Banerjee, W. Y. Loh, Wei-E Wang and Paul Kirsch, “A study of capping layers for sulfur monolayer doping on III-V junctions,” Appl. Phys. Lett. 101, 253514, 2012.
-
[1.60] J. C. Ho, A. C. Ford, Y. Chueh, P. W. Leu, O. Ergen, K. Takei, G. Smith, P. Majhi, J. Bennett, and A. Javey, “Nanoscale doping of InAs via sulfur monolayers,” Appl. Phys. Lett. 95, 072108, 2009.
-
Chapter 2
-
[2.6] W. Aderhold, I. Iliopoulos, and A. Hunter, “Virtual metrology in RTP with WISR,” in Proc. 15th IEEE Int. Conf. Adv. Therm. Process. Semicond.—RTP, 2007, pp. 101–104.
-
[2.7] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling. Upper Saddle River, NJ: Prentice-Hall, 2000.
-
[2.10] N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” International Journal of Thermophysics, vol. 22, no. 5, September 2001.
-
[2.13] Y.-J. Lee, T.-C. Cho, S.-S. Chuang, F.-K. Hsueh, Y.-L. Lu, P.-J. Sung, H.-C. Chen, M. I. Current, T.-Y. Tseng, T.-S. Chao, Chenming Hu, and F.-L. Yang, “Low-temperature microwave annealing processes for future IC fabrication—A review,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 651–665, Mar. 2014.
-
Chapter 3
-
[3.5] International Technology Roadmap for Semiconductor, [Online]. Available: http://www.itrs2.net/
-
[3.6] Alexei Nazarov, “Semiconductor-On-Insulator Material For Nanoelectronics Applications,” Springer, 2011.
-
[3.7] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito and H. Iwai, IEDM Tech. Dig., pp. S93, 1994.
-
[3.13] K.-W. Ang, J. Barnett, W.-Y. Loh, J. Huang, B.-G. Min, P. Y. Hung, I. Ok, J. H. Yum, G. Bersuker, M. Rodgers, V. Kaushik, S. Gausepohl, C. Hobbs, P. D. Kirsch, and R. Jammy, “300mm FinFET Results Utilizing Conformal, Damage Free, Ultra Shallow Junctions (Xj~5nm) Formed with Molecular Monolayer Doping Technique,” IEDM Tech. Dig., pp. 837-840, 2011.
-
Chapter 4
-
[4.1] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010.
-
[4.3] H.-B. Chen, Y.-C. Wu, C.-Y. Chang, M.-H. Han, N.-H. Lu, and Y.-C. Cheng, “Performance of GAA poly-Si nanosheet (2 nm) channel of junctionless transistors with ideal subthreshold slope,” in VLSI Tech. Dig., 2013, pp. T232–T233.
-
[4.5] K.-W. Ang, J. Barnett, W.-Y. Loh, J. Huang, B.-G. Min, P. Y. Hung, I. Ok, J. H. Yum, G. Bersuker, M. Rodgers, V. Kaushik, S. Gausepohl, C. Hobbs, P. D. Kirsch, and R. Jammy, “300mm FinFET Results Utilizing Conformal, Damage Free, Ultra Shallow Junctions (Xj~5nm) Formed with Molecular Monolayer Doping Technique,” IEDM Tech. Dig., pp. 837-840, 2011.
-
[4.6] Y.-J. Lee, T.-C. Cho, S.-S. Chuang, F.-K. Hsueh, Y.-L. Lu, T.-Y. Cheng, P.-J. Sung, H.-C. Chen, M. I. Current, T.-Y. Tseng, T.-S. Chao, Chenming Hu, and F.-L. Yang, “Low-temperature microwave annealing processes for future IC fabrication—A review,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 651–665, Mar. 2014.
-
[4.8] Sentaurus Device, Synopsys, Version G-2012.
-
[4.11] U. Gösele, in Microelectronic Materials and Processes, edited by R. A. Levy (Kluwer Academic, Norwell, MA, 1989), p. 583.
-
Chapter 5
-
[5.1] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010.
-
[5.3] Y.-J. Lee, T.-C. Cho, S.-S. Chuang, F.-K. Hsueh, Y.-L. Lu, T.-Y. Cheng, P.-J. Sung, H.-C. Chen, M. I. Current, T.-Y. Tseng, T.-S. Chao, Chenming Hu, and F.-L. Yang, “Low-temperature microwave annealing processes for future IC fabrication—A review,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 651–665, Mar. 2014.
-
[5.4] Y.-J. Lee, S.-S. Chuang, C.-I. Liu, F.-K. Hsueh ; P.-J. Sung, H.-C. Chen, C.-T. Wu, K.-L. Lin, J.-Y. Yao, Y.-L. Shen, M.-L. Kuo, C.-H. Yang, G.-L. Luo, H.-W. Chen, C.-H. Lai, M. I. Current, C.-Y. Wu, Y.-M. Wan, T.-Y. Tseng, Chenming Hu, and F. -L. Yang, “Full low temperature microwave processed Ge CMOS achieving diffusion-less junction and Ultrathin 7.5nm Ni mono-germanide,” IEDM Tech. Dig., p. 23.3.1, 2012.
-
[5.10] Y.-J. Lee., T.-C. Cho, P.-J. Sung, K.-H. Kao, F.-K. Hsueh, F.-J. Hou, P.-C. Chen, H.-C. Chen, C.-T. Wu, S.-H. Hsu, Y.-J. Chen, Y.-M. Huang, Y.-F. Hou, W.-H. Huang, C.-C. Yang, B.-Y. Chen, K.-L. Lin, M.-C. Chen, C.-H. Shen, G.-W. Huang, K.-P. Huang, M. I. Current, Y. Li, S. Samukawa, W.-F. Wu, J.-M. Shieh, T.-S. Chao, and W.-K. Yeh, “High Performance Poly Si Junctionless Transistors with Sub-5nm Conformally Doped Layers by Molecular Monolayer Doping and Microwave Incorporating CO2 Laser Annealing for 3D Stacked ICs Applications,” IEDM Tech. Dig., 2015, pp. 6.2.1–6.2.4.
-
[5.11] F. A. Khaja, H.-J. L. Gossmann, B. Colombeau, and T. Thanigaivelan, “Bulk FinFET junction isolation by heavy species and thermal implants,” Ion Implantation Technology (IIT), 2014 20th International Conference on
-
[5.12] Sriramkumar Venugopalan, Muhammed A. Karim, Ali M. Niknejad and Chenming Hu, “Compact Models for Real Device Effects in FinFETs,” SISPAD 2012.
-
[5.13] K. Okano, T. Izumida, H. Kawasaki, A. Kaneko, A. Yagishita, T. Kanemura, M. Kondo, S. Ito, N. Aoki, K. Miyano, T. Ono, K. Yahashi, K. Iwade, T. Kubota, T. Matsushita, I. Mizushima, S. Inaba, K. Ishimaru, K. Suguro, K. Eguchi, Y. Tsunashima, and H. Ishiuchi, “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length,” IEDM Tech. Dig., pp. 721 - 724, 2005.
-
Chapter 6
-
[6.3] S. D. Suk, S.-Y. Lee, S.-M. Kim, E.-J. Yoon, M.-S. Kim, M. Li, C. W. Oh, K. H. Yeo, S. H. Kim, D.-S. Shin, K.-H. Lee, H. S. Park, J. N. Han, C. J. Park, J.-B. Park, D.-W. Kim, D. Park, and B.-Il Ryu, “High performance 5nm radius Twin Silicon Nanowire MOSFET (TSNWFET) : fabrication on bulk si wafer, characteristics, and reliability,” IEDM Tech. Dig., pp. 717 - 720, 2005.
|