题名

拓樸絕緣體碲化銻薄膜之兆赫波輻射光譜學研究

并列篇名

Study of Terahertz Emission Spectroscopy in Topological Insulator Sb2Te3 thin film

作者

陳奕成

关键词

兆赫波 ; 拓樸絕緣體 ; Terahertz ; Topological Insulator

期刊名称

交通大學電子物理系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

羅志偉

内容语文

繁體中文

中文摘要

在這本論文中,我們利用超快雷射激發拓樸絕緣體碲化銻薄膜, 使其輻射具有旋光相依性的兆赫波。我們藉由不同偏振光入射下,觀 察到兆赫波的極性會有翻轉之現象。這個翻轉的現象,和旋光相依性 的光電流行為是非常吻合的。接著採用兆赫波時域波形的分離及重組 方法,將原本混合在一起的三個物理機制個別分離出來,這三個物理 機制分別為圓偏振光致自旋電流效應、線偏振光致自旋電流效應、光 子牽引效應。此外,我們可以從時間解析與角度解析光電子能譜的光 激載子動力學结果得到相對應的瞬時電流,在考慮遠場下,此瞬時電 流所產生的電磁輻射與我們的實驗結果一致。 最後,我們的研究不僅證明了拓樸絕緣體的表面態可輻射出具有 旋光相依性的兆赫波,而且本論文的成果也進一步說明了兆赫波輻射 光譜學是研究自旋電子學相關主題的新利器。

英文摘要

In this thesis, we show the helicity-dependent terahertz emissions from topological insulator (TI) Sb2Te3 thin films by ultrafast optical excitation. We observed the polarity-reversal of the emitted THz radiation as the helicity of optical pulses reverses. The observed phenomenon is consistent with the characteristics of the helicity-dependent photocurrent on TIs. Employing a decomposition-recombination procedure in time domain, the individual contributions of circular photogalvanic effect, linear photogalvanic effect and photon drag effect are revealed completely. Additionally, based on the Tr-ARPES results and considering transient-current radiation as well as far-field diffraction, our results are the same as that from Tr-ARPES results. Finally, our results not only demonstrate that helicity-dependent THz emission originated from topological insulator surface states can be manipulated by ultrafast optical pulses but also pave a way towards applications of THz emission spectroscopy on spintronics.

主题分类 基礎與應用科學 > 物理
理學院 > 電子物理系所
参考文献
  1. [1] 李佳璟,“利用拓樸絕緣體摻銅硒化鉍晶體產生兆赫波輻射,” 國立交通大學電子物理學系所學位論文, 2-3頁, (2011).
    連結:
  2. [2] G. J. Kim, J. I. Kim, S. G. Jeon, J. Kim, K. K. Park, and C. H. Oh, “Enhanced Continuous-Wave Terahertz Imaging with a Horn Antenna for Food Inspection,” Journal of Infrared, Millimeter and Terahertz Waves 33, 657 (2012).
    連結:
  3. [3] G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser‐driven semiconductor switch,” Applied Physics Letters 39, 295 (1981).
    連結:
  4. [4] G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Applied Physics Letters 38, 470 (1981).
    連結:
  5. [5] R. Heidemann, T. Pfeiffer, and D. Jager, “Optoelectronically pulsed slot-line antennas,” Electronics Letters 19, 316 (1983).
    連結:
  6. [6] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Applied Physics Letters 45, 284 (1984).
    連結:
  7. [7] M. Vanexter, C. Fattinger, and D. Grischkowsky, “High‐brightness terahertz beams characterized with an ultrafast detector,” Applied Physics Letters 55, 337 (1989).
    連結:
  8. [8] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Applied Physics Letters 56, 1011 (1990).
    連結:
  9. [9] Q. Wu, and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Applied Physics Letters 67, 3523 (1995).
    連結:
  10. [10] Q. Wu, and X. C. Zhang, “Ultrafast electro‐optic field sensors,” Applied Physics Letters 68, 1604 (1996).
    連結:
  11. [11] Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Applied Physics Letters 68, 2924 (1996).
    連結:
  12. [12] Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two‐dimensional electro‐optic imaging of THz beams,” Applied Physics Letters 69, 1026 (1996).
    連結:
  13. [13] 洪勝富 , 齊正中, “短脈衝雷射激發兆赫輻射技術及其應用,”物理雙月刊, 二十三卷二期, 322-324頁, (2001).
    連結:
  14. [14] K. Vonklitzing, G. Dorda, and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,” Physical Review Letters 45, 494 (1980).
    連結:
  15. [15] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Dennijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Physical Review Letters 49, 405 (1982).
    連結:
  16. [16] X. G. Wen, “Topological orders and edge excitations in fractional quantum Hall states,” Advances in Physics 44, 405 (1995).
    連結:
  17. [17] C. L. Kane, and E. J. Mele, “Quantum spin Hall effect in grapheme,” Physical Review Letters 95, 226801 (2005).
    連結:
  18. [18] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum hall effect in grapheme,” Science 315, 1379 (2007).
    連結:
  19. [19] A. J. Niemi, and G. W. Semenoff, “Spectral asymmetry on an open space,” Physical Review D 30, 809 (1984).
    連結:
  20. [20] C. L. Kane, and E. J. Mele, “Z2 Topological Order and the Quantum Spin Hall Effect,” Physical Review Letters 95, 146802 (2005).
    連結:
  21. [21] J. E. Moore, and L. Balents, “Topological invariants of time-reversal-invariant band structures,” Physical Review B 75, 121306 (2007).
    連結:
  22. [23] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314, 1757 (2006).
    連結:
  23. [24] M. Koenig, S. Wiedmann, C. Bruene, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 318, 766 (2007).
    連結:
  24. [25] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface,” Nature Physics 5, 398 (2009).
    連結:
  25. [26] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nature Physics 5, 438 (2009).
    連結:
  26. [27] S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE Journal of Quantum Electronics 35, 1257 (1999).
    連結:
  27. [28] X. C. Zhang, and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” Journal of Applied Physics 71, 326 (1992).
    連結:
  28. [29] S. L. Chuang, S. Schmittrink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Physical Review Letters 68, 102 (1992).
    連結:
  29. [32] P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” Journal of Applied Physics 91, 5533 (2002).
    連結:
  30. [33] T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Physical Review B 53, 4005 (1996).
    連結:
  31. [35] X. C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Applied Physics Letters 56, 2228 (1990).
    連結:
  32. [37] S. E. Ralph and D. Grischkowsky, “THz spectroscopy and source characterization by optoelectronic interferometry,” Applied Physics Letters 60, 1070 (1992).
    連結:
  33. [38] Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Applied Physics Letters 67, 3523 (1995).
    連結:
  34. [39] Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Applied Physics Letters 71, 1285 (1997).
    連結:
  35. [41] S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New Journal of Physics 7, 216 (2005).
    連結:
  36. [42] A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Optics Letters 29, 1366 (2004).
    連結:
  37. [43] X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” Journal of Applied Physics 100, 094905 (2006).
    連結:
  38. [44] E. L. Ivchenko and G. E. Pikus, “New photogalvanic effect in gyrotropic crystals,” Letters to Jounal of Experimental and Theoretical Physics 27, 604 (1978).
    連結:
  39. [46] 林怡萍, “自旋的電性操控-淺談自旋軌道偶合,” 物理雙月刊, 二十八卷五期, 792-795頁, (2006).
    連結:
  40. [48] X. W. He, B. Shen, Y. H. Chen, Q. Zhang, K. Han, C. M. Yin, N. Tang, F. J. Xu, C. G. Tang, Z. J. Yang, Z. X. Qin, G. Y. Zhang, and Z. G. Wang, “Anomalous Photogalvanic Effect of Circularly Polarized Light Incident on the Two-Dimensional Electron Gas in AlxGa1-xN/GaN Heterostructures at Room Temperature,” Physical Review Letters 101, 147402 (2008).
    連結:
  41. [49] S. D. Ganichev, and W. Prettl, “Spin photocurrents in quantum wells,” Journal of Physics-Condensed Matter 15, 935 (2003).
    連結:
  42. [51] E. L. Ivchenko, and G. E. Pikus, Superlattices and Other Heterostructures Symmetry and Optical Phenomena (Springer, Berlin, 1997).
    連結:
  43. [53] E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, New York, 2005).
    連結:
  44. [55] M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, “Theory of resonant photon drag in monolayer grapheme,” Physical Review B 81, 165441 (2010).
    連結:
  45. [57] A. A. Grinberg, and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Physical Review B 38, 87 (1988).
    連結:
  46. [58] J. Maysonnave, S. Huppert, F. Wang, S. Maero, C. Berger, W. de Heer, T. B. Norris, L. A. De Vaulchier, S. Dhillon, J. Tignon, R. Ferreira, and J. Mangeney, “Terahertz Generation by Dynamical Photon Drag Effect in Graphene Excited by Femtosecond Optical Pulses,” Nano Letters 14, 5797 (2014).
    連結:
  47. [59] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, United States of America, 2005).
    連結:
  48. [60] J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nature Nanotechnology 7, 96 (2012).
    連結:
  49. [64] S. Jie and T. F. Heinz, Terahertz radiation from semiconductors
    連結:
  50. (Springer, Berlin, 2004.)
    連結:
  51. [65] N. Ogawa, M. S. Bahramy, Y. Kaneko, and Y. Tokura, “Photocontrol of Dirac electrons in a bulk Rashba semiconductor,” Physical Review B 90, 125122 (2014).
    連結:
  52. [66]J. B. Baxter and C. A. Schmuttenmar, Time-Resolved Terahertz Spectroscopy and Terahertz Emission Spectroscopy (CRC Press, New York, 2007.)
    連結:
  53. [67] A. Junck, G. Refael, and F. V .Oppen, “Photocurrent response of topological insulator surface states,” Physical Review B 88, 075144 (2013)
    連結:
  54. [69] J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, New York, 2005.)
    連結:
  55. [71] P. Kuzel, M. A. Khazan, and J. Kroupa, “Spatiotemporal transformations of ultrashort terahertz pulses,” Journal of the Optical Society of America B-Optical Physics 16, 1795 (1999).
    連結:
  56. [22] A. Geim, K. Novoselov, “Scientific Background on the Nobel Prize in physics 2010,” The Royal Swedish academy of sciences, 5 October (2010).
  57. [30] D. Mittleman, Sensing with Terahertz Radiation (Springer, New York, 2002).
  58. [31] X.-C. Zhang, and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2009).
  59. [34] R. Williams, Modern GaAs Proceeding Methods (Artech House, Boston, 1990).
  60. [36] S. E. Ralph, S. Perkowitz, N. Katzenellenbogen, and D. Grischkowsky, “Terahertz spectroscopy of optically thick multilayered semiconductor structures,” Journal of the Optical Society of America B-Optical Physics 11, 2528 (1994).
  61. [40] Y.-S. Lee, Principles of Terahertz Science and Technology (Springer New York, 2009).
  62. [45] S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of Spin into Directed Electric Current in Quantum Wells,” Physical Review Letters 86, 4358 (2001).
  63. [47] S. D. Ganichev, E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, “Spin-galvanic effect” Nature 417, 153 (2002).
  64. [50] 王靜汝, “a 面成長氮化銦鎵/氮化鎵多重量子井圓偏振光致自旋電流效應之研究,” 國立臺灣海洋大學光電科學研究所學位論文, 12-13頁, (2011).
  65. [52] M. Berlin, “theory of photocurrents in topological insulaors,” Freien Universität Berlin im Fachbereich Physik, pp. 15-29 , (2015).
  66. [54] A. M. Danishevskii, A. A. Kastal'Skii, S. M. Ryvkin, and I. D. Yaroshetskii, “Dragging of Free Carriers by Photons in Direct Interband Transitions in Semiconductors,” Journal of Experimental and Theoretical Physics 31, 292 (1970).
  67. [56] A. N. Obraztsov, D. A. Lyashenko, S. L. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Applied Physics Letters 94, 231112 (2009).
  68. [61] J. S. Barriga, E. Golias, A. Varykhalov, J. Braun, L. V. Yashina, R. Schumann, J. Minár, H. Ebert, O. Kornilov, and O. Rader, “Ultrafast spin-polarization control of Dirac fermions in topological insulators,” Physical Review B 93, 155426 (2016).
  69. [62] C.-M. Tu, T.-T. Yeh, W.-Y. Tzeng, Y.-R. Chen, H.-J. Chen, S.-A. Ku, C.-W. Luo, J.-Y. Lin, K.-H. Wu, J.-Y. Juang, T. Kobayashi, C.-M. Cheng, K.-D. Tsuei, H. Berger, R. Sankar, and F.-C. Chou, “Manifestation of a Second Dirac Surface State and Bulk Bands in THz Radiation from Topological Insulators,” Scientific Reports 5, 14128 (2015).
  70. [63] H. Eugene, Optics (Addison-Wesley, United States of America ,1987).
  71. [68] S. D. Ganichev, E. L. Ivchenko, W. Prettl , “Photogalvanic e-ffects in quantum wells,” Physica E: Low-dimensional Systems and Nanostructures 14, 166 (2002)
  72. [70] T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Noetzold, S. Maehrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Bluegel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Muenzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nature Nanotechnology 8, 256 (2013).