题名

基於毫米波頻段巨量天線第五代蜂巢式系統中手機同步及基地台搜尋方法之研究

并列篇名

A Study on Handset Synchronization and Cell Search Methods for 5G Cellular System based on Massive Antennas in Millimeter Wave Band

作者

林秉儒

关键词

5G ; 細胞搜尋 ; 同步 ; OFDM ; 5G ; Cell Search ; Synchronization ; OFDM

期刊名称

交通大學電信工程系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

黃家齊

内容语文

英文

中文摘要

在第五代蜂巢式系統下,使用者手機開機會面臨同步和基地台搜尋的問題,在本篇論文中,我們提出了新的方法進行同步和基地台搜尋。本論文研究第五代蜂巢式系統下的基地台搜尋程序,我們會分成不同階段來進行討論。我們利用時域和頻域分別進行使用者資料傳輸和基地台搜尋程序,彼此之間的影響和效能會在本文中討論。在第一階段,我們利用在時域上所接收到的訊號進行我們所提出演算法來估計符元時間和小數載波頻率偏移,這種方法是不需要使用任何額外已知的訊號去做互相關運算。在第二階段,我們利用在頻域上擁有最大能量的主控制頻的位置來偵測整數載波頻率偏移。在第三階段,校正完整數載波頻率偏移後,我們利用第二大能量的輔控制頻的位置來獲得細胞基地台的識別碼。在第四階段,我們利用輔控制頻所攜帶的控制訊號做差分檢測來判斷是否為訊框起始位置。在進行這四個階段後,使用者手機就可以完成同步和基地台搜尋。在模擬結果中,我們所提出估計時間和小數載波頻率偏移的演算法優於傳統的同步方法。在時域上存在使用者資料的干擾下,我們利用頻域的控制頻去偵測整數載波頻率偏移與細胞基地台的識別碼及訊框起始位置方法的效能都能達到我們的需求。

英文摘要

In the 5G cellular system, there exists the problem of synchronization and cell search when the mobile boots up. In this thesis, we propose a new method to execute synchronization and cell search. The cell search procedure is discussed and is divided into four different stages in the 5G cellular system. The users' data signals are transmitted in the time domain and we execute cell search according to control signals transmitted in the frequency domain at the same time. In the first stage, we use the received signal with the proposed algorithm to estimate symbol timing and fractional carrier frequency offset (FCFO) in the time domain, this method does not require any additional preamble to do cross correlation. In the second stage, we use a primary control tone to detect integer carrier frequency offset (ICFO) in the frequency domain. In the third phase, we use the secondary control tones to obtain cell ID after adjustment of ICFO. In the fourth stage, we use the control data, which is carried by the secondary control tones, to detect frame header by differential detection. The cell search procedure ends when the above four stages are completed. In our simulation results, we show that the proposed joint symbol timing, FCFO estimation, cell ID detection, and frame header detection algorithms have superior performances even with the interference of users' data.

主题分类 電機學院 > 電信工程系所
工程學 > 電機工程
参考文献
  1. [1] A. Osseiran, et al., “The foundation of the Mobile and Wireless Communications System for 2020 and beyond Challenges, Enablers and Technology Solutions,” In proceedings of IEEE Vehicular Technology Conference (VTC2013-Spring), Dresden, Germany, June, 2013.
    連結:
  2. [2] G. Wunder et al, “5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity,” Mobile and Wireless Comm. Systems for 2020 and beyond Work-shop, IEEE VTC, Spring, 2013.
    連結:
  3. [3] J. G. Andrews, “What will 5G be?”, IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065-1082, 2014.
    連結:
  4. [4] E. G. Larsson, F. Tufvesson, O. Edfors and T. L. Marzetta, “Massive-MIMO for Next Generation Wireless Systems”, IEEE Commun. Mag., vol. 52, no. 2, pp. 186-95, 2014.
    連結:
  5. [5] A. Pitarokoilis, S. K. Mohammed and E. G. Larsson, “On the Optimality of Single-Carrier Transmission in Large-Scale Antenna Systems”, IEEE Wireless Commun. Lett., vol. 1, no. 4, pp. 276-279, 2012.
    連結:
  6. [6] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590–3600, 2010.
    連結:
  7. [7] W. Roh, “Millimeter-wave beamforming as an enabling technology for 5G cellular com-munications: Theoretical feasibility and prototype results”, IEEE Commun. Mag., vol. 52, no. 2, pp. 106-113, 2014.
    連結:
  8. [9] Y. Tsai, G. Zhang, D. Grieco, F. Ozluturk, “Cell Search in 3GPP Long Term Evolution Systems”, IEEE Vehicular Technology Magazine, June 2007.
    連結:
  9. [10] Y. Tsai, G. Zhang, “Time and Frequency Synchronization for 3GPP Long Term Evolution Systems”, IEEE Vehicular Technology Conference, 65th VTC2007-Spring, April 2007.
    連結:
  10. [12] K. Manolakis, D. M. G. Estevez, V. J. W. Xu, C. Drewes, “A Close Concept for Syn-chronization and Cell Search in 3GPP LTE Systems”, IEEE wireless communications and networking conference WCNC, 2009.
    連結:
  11. [13] J.-I. Kim, J.S. Han, H.-J. Roh, and H.-J. Choi, “SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Receiver”, In IEEE international symposium on communications and information technology (pp. 199–203), 2009.
    連結:
  12. [14] F. J. Lopez-Martinez, E. Martos-Naya, J. T. Entrambasaguas, “Low complexity cell search scheme for LTE and LTE-advanced mobile technologies”, Computers and Electrical Engineering, 7 June 2012.
    連結:
  13. [15] Y.-C. Lin, S.-L Su, Y.-J Fan, “Joint Sector ID and ICFO Detection by Using Partial Correlation Scheme in LTE Cell Search Process”, Wireless Personal Communications, 15 August 2012.
    連結:
  14. [16] J.-I. Kim, J.S. Han, H.-J. Roh, and H.-J. Choi, “SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Receiver”, In IEEE international symposium on communications and information technology (pp. 199–203), 2009.
    連結:
  15. [17] P.-Y Tsai, H.-W Chang, “A New Cell Search Scheme in 3GPP Long Term Evolution Downlink OFDMA Systems”, In IEEE WCSP (pp. 1–5), 2009.
    連結:
  16. [18] A. N. Gaber, L. D. Khalaf, A. M. Mustafa, “Synchronization and Cell Search Algorithms in 3GPP Long Term Evolution Systems (FDD mode)”, WSEAS TRANSACTIONS on COMMUNICATIONS, February 2012.
    連結:
  17. [19] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, and T.S. Rappaport, “28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City,” in Proc. IEEE ICC, 2013.
    連結:
  18. [20] S. Sun and T. S. Rappaport, “Multi-beam antenna combining for 28 GHz cellular link improvement in urban environments,” in Proc. IEEE Globecom, Dec. 2013.
    連結:
  19. [21] M. K. Samimi, K. Wang, Y. Azar, G. N. Wong, R. Mayzus, H. Zhao, J. K. Schulz, S. Sun, F. Gutierrez, and T. S. Rappaport, “28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City,” in Proc. IEEE VTC, 2013.
    連結:
  20. [22] G. R. MacCartney, Jr., J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proc. IEEE Globecom, Dec. 2013.
    連結:
  21. [24] T. O’Farrell, “Design and evaluation of a high data rate optical wireless system for the diffuse indoor channel using barker spreading codes and RAKE reception [optical wireless communications],” Commun., IET, vol. 2, no. 1, pp. 35–44, 2008.
    連結:
  22. [29] P.K. Singya and A.S. Gandhi, “A data-aided timing offset estimator for OFDM synchronization,” in Proc. IEEE SPICES, pp. 1-5, Feb. 2015.
    連結:
  23. [30] M. Gul, X. Ma and S. Lee, “Timing and frequency synchronization for ofdm downlink transmissions using zadoff-chu sequences”, Wireless Communications, IEEE Transactions on, vol. 14, no. 3, pp. 1716-1729, 2015.
    連結:
  24. [31] G. Ren , Y. Chang , H. Zhang and H. Zhang, “Synchronization methods based on a new constant envelope preamble for OFDM systems”, IEEE Trans. Broadcast., vol. 51, no. 1, pp. 139-143, 2005.
    連結:
  25. [32] J. J. van de Beek , M. Sandell and P. O. Borjesson, “ML Estimation of Time and Frequency Offset in OFDM Systems”, IEEE Trans. on Signal Proc., vol. 45, pp. 1800-1805, 1997.
    連結:
  26. [33] M. Speth , F. Classen and H. Meyr, “Frame synchronization of OFDM systems in frequency selective fading channels”, Proc. IEEE 47th Vehicular Technology Conference, pp. 1807-1811, 1997.
    連結:
  27. [34] K. Ramasubramanian and K. Baum, “An OFDM timing recovery scheme with inherent delay-spread estimation”, Proc. IEEE GLOBECOM, vol. 5, pp. 3111-3115, 2001.
    連結:
  28. [35] D. Lee and K. Cheun, “Coarse symbol synchronization algorithms for OFDM systems in multipath channels”, IEEE Commun. Lett., vol. 6, no. 10, pp. 446-448, 2002.
    連結:
  29. [36] T. Fusco and M. Tanda, “Blind synchronization for OFDM systems in multipath channels”, IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1340-1348, 2009.
    連結:
  30. [37] S. Ma, X. Pan, G. Yang and T. Ng, “Blind symbol synchronization based on cyclic prefix for OFDM systems”, IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1746-1751, 2009.
    連結:
  31. [39] W.-L. Chin, “ML estimation of timing and frequency offsets using distinctive correlation characteristics of OFDM signals over dispersive fading channels”, IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 444-456, 2011.
    連結:
  32. [40] S. Baumgartner, Y. E. H. Shehadeh and G. Hirtz, “Performance Evaluation of Frequency and Symbol Timing Offset Estimation Methods for DAB/DAB+ Receivers under Multipath Fading Channels”, The 22nd International Conference on Software, Telecommunications and Computer Networks - SoftCOM, 2014.
    連結:
  33. [41] S. Baumgartner, Y. E. H. Shehadeh and G. Hirtz, “A Modified Symbol Timing and Frequency Synchronization Method Based on Cyclic Prefix for OFDM Systems”, Microwave and Radio Electronics Week 2015, 2015.
    連結:
  34. [42] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction”, IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, 1994.
    連結:
  35. [43] Y. Mostofi and D. C. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system”, IEEE Trans. Commun., vol. 54, no. 2, pp. 226-230, 2006.
    連結:
  36. [44] Q. Wang and M. Rupp, “Analytical link performance evaluation of LTE downlink with carrier frequency offset,” in Conference Record of the 45th Asilomar Conference, 2011 (Asilomar-2011), Pacific Grove, USA.
    連結:
  37. [45] X. Lin, L. Jiang, and J. G. Andrews, “Performance analysis for asynchronous multicarrier wireless networks,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3377–3390, 2015.
    連結:
  38. [46] C. R. N. Athaudage and K. Sathananthan, “Cramer-rao lower bound on frequency offset estimation error in OFDM systems with timing error feedback compensation,” in Proc. 5th International Conference on information, Communications and Signal Processing, Bangkok, Thailand, Dec. 2005.
    連結:
  39. [8] S. Sesia, I. Toufik and M. Baker, “LTE - The UMTS Long Term Evolution, From Theory to Practice”, Wiley, 2011.
  40. [11] 3GPP TS 36.211 V10.4.0:“Physical Channels and Modulation”, December 2011.
  41. [23] M. R. Akdeniz, Y. Liu, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE Journal on Sel. Areas in Communications, Sep. 2014.
  42. [24] A.A.M. Saleh and R.A. Valenzuela, “A Statistical Model for Indoor Multipath Propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no.2, pp.128-137, Feb. 1987.
  43. [25] P. Chawla, B. Singh, “Role of Walsh Codes and pseudorandom noise sequences in CDMA” 2014 IEEE International Conference on Industrial Engineering and Engineering Management, pp.1076-1080, Dec 2014.
  44. [27] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, “MIMO-OFDM Wireless Communications with MATLAB,” John Wiley & Sons (ASIA), and IEEE Press, 2010.
  45. [28] S. Patil, R. Upadhyay, “A Symbol Timing Synchronization Algorithm for WiMAX OFDM”, Conference on Computational Intelligence and Communication Networks (CICN), October 2011.
  46. [38] X. Liu, K. Pan, Y. Zuo and J. Chen, “Blind Symbol Synchronization for OFDM Systems in Multipath Fading Channels”, International Conference on Wireless Communications, Networking and Mobile Computing (WICOM), vol. 58, pp. 1746-1751, 2010.
  47. [47] Q. Wang, C. Mehlführer, and M. Rupp, “Carrier frequency synchronization in the downlink of 3GPP LTE,” in Proceeding of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'10), Istanbul, Turkey, Sep. 2010.