题名

二氧化鈦/氧化鈣/氧化釔陶瓷材料與熔融鈦界面反應

并列篇名

Interfacial Reactions between Titanium and Titanium Dioxide/ Calcium Oxide/ Alumina Oxide Composites

作者

黃韋誠

关键词

二氧化鈦 ; 氧化鈣 ; 氧化鋁 ; 介面反應 ; 複合材料 ; Titanium Dioxide ; Calcium Oxide ; Alumina Oxide ; Interfacial Reactions ; Composites

期刊名称

交通大學材料科學與工程系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

林健正

内容语文

繁體中文

中文摘要

本研究將不同比例的 TiO2/CaO/Al2O3 粉末相互混和,並以 1300°C /30min 的條件熱壓成陶瓷複合試片後,分別形成 CaTiO3 單體以及三種不同比例 Al2O3/CaTiO3 複合材料,在 1atm 氬 (Ar) 保護氣氛下,與鈦進行1500°C/6hour 的高溫界面反應。本研究以 X 光繞射儀 (XRD) 和掃描式電子顯微鏡 (ASEM) 來分析界面微觀結構,並探討陶瓷材料與鈦高溫界面反應之生成機構。 本研究發現所有陶瓷試片與 Ti 高溫界面反應後,鈦側因氧和鈦的親和力很大,氧會往鈦側擴散,生成固溶氧的 α-Ti ,而鈣幾乎不溶於鈦內,也不跟鈦反應。陶瓷側因為氧往鈦側擴散,靠近界面處的陶瓷氧化物會有缺氧現象。在三種不同比例的熱壓 Al2O3/CaTiO3 複合材料中,當 Al2O3 體積比例為 10%時,鋁不會擴散至鈦側,只會固溶進 CaTiO3,形成 Ca(Ti, Al)O3。當 Al2O3 體積比例大於 30%, Al2O3 會使我們的陶瓷試片有融化的現象發生,這是因為 Al2O3 與殘存的 CaO 發生一連串的反應,產生熔點較低的化合物 CaAl2O4。以及剩下的 Al2O3 和鈦的氧化物。

英文摘要

Various proportions of TiO2 / CaO / Al2O3 powders were mixed and hot pressed at 1300°C for 30min. These hot-pressed specimens reacted with the commercially pure titanium at 1500°C for 6hour in 1 atm argon atmosphere. The high temperature interfacial reactions were explored between each ceramic specimen and titanium metal. The interface microstructures were analyzed using an X-ray diffraction diffractometer (XRD) and an analytic scanning electron microscope (SEM/EDS). When ceramic specimens reacted with titanium at 1500°C for 6hour, the oxygen would be dissolved to the titanium to form α-Ti due to the great affinity between oxygen and titanium, resulting in the hypoxia phenomenon in the ceramic side near the interface. In the CaTiO3 specimens incorating with Al2O3. When the ceramic specimens with the volume ratio of Al2O3 was 10%. Al will not diffus to Ti. It dissolves in CaTiO3, and form Ca (Ti, Al) O3. When the ceramic specimens with the volume ratio of Al2O3 was more than 30%. There were melted phenomenon in the specimens. Because the chain reaction of the residual CaO and Al2O3, resulting in a lower melting point compounds. As well as the titanium oxide and Al2O3 will produce again.

主题分类 工學院 > 材料科學與工程系所
工程學 > 工程學總論
参考文献
  1. 3. A. Chen, K. Sridharan, J. R. Conrad, and R. P. Fetherston, “Surface Modification of Ti-6Al-4V Surgical Alloy by Plasma Source Ion Implantation,” Surf. Coat. Technol., 50 [1] 1-4 (1991).
    連結:
  2. 4. B. Hill, “Titanium Use in Aerospace Applications,” Industrial Heating, 7 57-59 (2007).
    連結:
  3. 5. K. Sakamoto, K. Yashikawa, T. Fujisawa, and T. Onaye, “Changes in Oxygen Contents of Titanium Aluminizes by Vacuum Induction, Cold Crucible Induction and Electron Beam Melting,” Iron Steel Inst. jpn. Int., 32 [5] 616-621 (1992).
    連結:
  4. 7. R. L. Saha and K. T. Jacob, “Casting of Titanium and It’s Alloy,” Def. Sci. J., 36 [2] 121-141 (1986).
    連結:
  5. 8. G.Welsch and W.Bunk, “Deformation Modes of the Alpha-Phase of Ti-6Al-4V as a Function of Oxygen Concentration and Aging Temperature,” Met. Trans.A., 13A 889-899(1982).
    連結:
  6. 14. J. L .Murray, “Ca-Ti (Calcium-Titanium),” Binary Alloy Phase Diagrams, 1 959-960(1990).
    連結:
  7. 15. P. I. Gouma and M. J. Mills, “Anatase-to-Rutile Transformation in Titania Powders,” J. Am. Ceram. Soc., 84 [3] 619–22 (2001).
    連結:
  8. 16. R. Austin and S. f. Lim, “The Sackler Colloquium on Pormoses and Perils in Nanotechnology for Medicine,” PNAS, 105 [45] 17217-17221 (2008).
    連結:
  9. 17. S. Woodley and C. Catlow, “Structure Prediction of Titania Phases: Implementation of Darwinian versus Lamarckian Concepts in an Evolutionary Algorithm,” Computational Materials Science, 45 [1] 84-95 (2009).
    連結:
  10. 19. J. S. Hong, S. D. D. Torre, K. Miyamoto, H. Miyamoto, and L. Gao, "Crystallization of Al2O3/ZrO2 Solid Solution Powders Prepared by Coprecipitation," Mater. Lett., 37 [1-2] 6-9 (1998).
    連結:
  11. K. Liddell, and D. P. Thompson, "Phase Transformation in the Al2O3–ZrO2 System," J. Mater. Sci., 33 [6] 1399-1403 (1998).
    連結:
  12. 21. S. Inamura, H. Miyamoto, Y. Imaida, M. Takagawa, K. Hirota, and O. Yamaguchi, "Formation and Hot Isostatic Pressing of ZrO2 Solid Solution in the SystemZrO2-Al2O3," J. Mater. Sci., 29 [18] 4913-4917 (1994).
    連結:
  13. 22. K. Ishida, K. Hitota, O. Yamaguchi, H. Kume, S. Inamura, and H. Miyamoto, "Formation of Zirconia Solid Solutions Containing Alumina Prepared by New Preparation Method," J. Am. Ceram. Soc., 77 [5] 1391-1395 (1994).
    連結:
  14. 23. G. P. Kelkar and A. H. Carim, "Phase Equlibria in the Ti-Al-O System at 945°C and Analysis of Ti/Al2O3 Reactions," J. Am. Ceram. Soc., 78 [3] 572-576 (1995).
    連結:
  15. 24. J. H. Selverian, F. S. Ohuchi, M. Bortz, and M. R. Notis, "Interface Reactions Between Titanium Thin Films and (1-12) Sapphire Substrates," J. Mater. Sci., 26 [23] 6300-6308 (1991).
    連結:
  16. 25. A. Zalar, B. Baretzky, F. Dettenwanger, M. Ruhle, and P. Panjan, "Interdiffusion at the Al2O3/Ti Interface Studied in Thin-film Structure," Surf. InterfaceAnal., 26 [11] 861-867 (1998).
    連結:
  17. 27. Y. C. Lu, S. L. Sass, Q. Bai, D. L. Kohlstedt,and W. W. Gerbericj, "The Influence of Interfacial Reactions on the Fracture Toughness of
    連結:
  18. 28. Zalar, A., B. M. M. Baretzky, et al. "Interfacial reactions inAl2O3/Ti, Al2O3/Ti3Al and Al2O3/TiAl bilayers." Thin Solid Films352(1-2): 151-155. (1999)
    連結:
  19. 29. R. C. DeVries, R. Roy, and E. F. Osborn, “Phase Equilibria in the System CaO-TiO2,” J. Phys. Chem., 58 [12] 1069-1073 (1954).
    連結:
  20. 30. K. T. Jacob and K. P. Abraham, “Thermodynamic Properties of Calcium Titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7,” J. Chem. Thermodynamics, 41 816–820 (2009).
    連結:
  21. 31. Yoshihiro OHISHI, Yasuharu MIYAUCHI, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3-TiO2 Ceramics by Annealing Treatment” Japanese Journal of Applied Physics, 43 749-751(2004).
    連結:
  22. 32. GUNNAR ERIKSSON and ARTHUR D. PELTON, “Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-Al2O3, Al203-SiO2, and CaO-Al203-SiO2 Systems” Physical Chemistry Metallurgical Transactions B, 24 807-816(1993)
    連結:
  23. 33. P.E.D. Morgan and M.S. Koutsoutis, “Phase Relations in the Ca-Ti-Al-O System; Further Studies on Members of the CTA Family” J. Mater. Sci. , 4 321-323(1985)
    連結:
  24. 34. A. Zalar, B. Baretzky, F. Dettenwanger, M. Rühle, and P. Panjan, “Interdiffusion at the Al2O3/Ti Interface Studied in Thin-Film Structures,” Surf. Interface Anal., 26 861–867 (1998).
    連結:
  25. 36. S. R. Barman and D. D. Sarma, “Electronic Structure of TiO (0.8<x<1.3) with Disordered and Ordered Vacancies,” Phys. Rev. B, 49 16141 (1994).
    連結:
  26. 37. A. A. Valeeva, A. A. Rempel, W. Sprengel, and H. Schaefer, “Identification and Study of Vacancies in Titanium Monoxide by Means of Positron Annihilation Techniques,” Phys. Chem. Chem. Phys., 5 2304-2307 (2003).
    連結:
  27. 38. A. A. Valeeva, A. A. Rempel, W. Sprengel, and H. Schaefer, “Vacancies on the Ti Sublattice in Titanium Monoxide TiOy Studied Using Positron Annihilation Techniques,” Phys. Rev. B, 75 [9] 094107 (2007).
    連結:
  28. 39. S. Bartkowski and M. Neumann, “Electronic Structure of Titanium Monoxide,” Phys. Rev. B, 56 [16] 10656-10667 (1997).
    連結:
  29. 40. Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang and Z. Ren, “Thermoelectric Property Studies on Bulk TiOx with x from 1 to 2,” Appl. Phys. Lett., 91 052505 (2007).
    連結:
  30. 41. J. L. Murray and H. A. Wriedt, “The O−Ti (Oxygen-Titanium) system,” J. Phase Equilib., 8 148 (1987)
    連結:
  31. 43. K. T. Jacob and Sapna Gupta “Phase diagram of the system Ca–Ti–O at 1200 K” Bull. Mater. Sci, 32 611-616 (2009)
    連結:
  32. 44. K. T. Jacob and G. Rajitha. “Gibbs Energy of Formation of Ca3Ti8Al12O37 and Phase Relations and Chemical Potentials in the System Al2O3-TiO2-CaO” JPEDAV, 33 293-302 (2012)
    連結:
  33. 1. 洪國裕,「鈦及鈦合金之熔煉」,鑄造月刊,一一七期,民國88年。
  34. 2. 賴耿陽,金屬鈦-理論與應用,復漢出版社, 台北,民國79年。
  35. 6. G. Broihanne and J. Bannister, “Cold Crucible Melting Gets A New Spin,” Mater. World, 8 [8] 21-23 (2000).
  36. 9. E. P. Lautenschlager and P. Monaghan, “Titanium And Titanium Alloy as Dental Materials,” International Dental Journal, 43 [3] 245-253 (1993).
  37. 10. R. Brick, A. W. Pense, and R. B. Gordon, Structure and Properties of Engineering Material, 4th Ed., McGraw-Hill, New York, 1997.
  38. 11. 謝承木,鈦及鈦合金鑄造,機械工業出版社,台北,民國94年。
  39. 12. E. W. Collings, Applied superconductivity, Metallurgy, and physics of Titanium Alloy Vol. 1, Plenum Press, New York and London, 1985.
  40. 13. P. Duwez, F. Odell, and F. H. Brown, “Stabilization of Zirconia with
  41. Calcia and Magnesia,” J. Am. Ceram., 35 [5] 107-113 (1952).
  42. 18. W. F. Smith and J. Hashemi, "Foundations of Materials Science and Engineering," fourth edition, McGraw-Hill (2006).
  43. 20. L. Gao, Q. Liu, J. S. Hong, H. Miyamoto, S. D. D. Torre, A. Kakitsuji,
  44. 26. A. M. Kliauga and M. Ferrante, "Interface Compounds Formed During the Diffusion Bonding of Al2O3 to Ti," J. Mater. Sci., 35 [17] 4243-4249 (2000).
  45. 35. G. Ye and T. Rosenqvist, “Phase Relations in the Ti-Si-Ca-O System Under Reducing Conditions, and Silicothermic Reduction of Titanium Oxide,” Scandinavian Journal of Metallurgy, 20 222-228 (1991).
  46. 42. Dr.Arunachalam Lakshmanan, Sintering of Ceramics – New Emerging Techniques, InTech, 505 (2012)