题名

標的導向胜肽-熱穩定溶血素重組蛋白表現 及其乳癌治療應用之研究

并列篇名

Expression of Targeted Delivery Peptide Thermostable Direct Hemolysin Recombinant Proteins and Application in Breast Cancer Therapy

作者

廖曼君

关键词

熱穩定溶血素 ; 蛋白毒素 ; 癌症抑制 ; 乳癌標靶胜肽 ; 霍氏格里蒙菌 ; Thermostable direct hemolysin ; Grimontia hollisae ; Protein toxin ; Breast cancer ; Targeted delivery peptide

期刊名称

交通大學生物科技學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

吳東昆

内容语文

英文

中文摘要

熱穩定溶血素 (Thermostable direct hemolysin, TDH) 是一種穿孔毒素,由Grimontia hollisae弧菌生產。然而,這種蛋白毒素缺乏細胞選擇性,因此無法作為蛋白質藥進行應用。為了要提高對腫瘤的辨識專一性,並減少副作用的影響,我嘗試生產具有標靶腫瘤功能的熱穩定溶血素, 以作為合適的免疫毒素製劑。 由於突變後的TDHR46E生物活性以及副作用反應均降低,因此有潛力作為抗癌製劑。因此,本研究以TDHR46E的蛋白作為架構設計相應的TDH腫瘤標靶蛋白。在TDHR46E蛋白的C端接上標靶胜肽。為了將TDHR46E精確定位到腫瘤細胞上氨基肽酶P (Aminopeptidase P,APaseP)和神經氈蛋白-1(Neuropilin-1,Nrp-1)的受器,PEGA(P5)和iRGD(P6)被選定為乳腺癌標靶胜肽。 在細胞毒活性測試中使用的MDA-MB-231和MCF-7乳癌細胞株具有目標受器,且BT-474細胞株則無目標受器,進行Gh-TDHR46E-P5和Gh-TDHR46E-P6的細胞毒活性測試。結果顯示,Gh-TDHR46E-P5和Gh-TDHR46E-P6對MDA-MB-231和MCF-7表現明顯的細胞毒性,且BT-474細胞則否。與此相反,所有的腫瘤細胞系經Gh-TDHR46E處理後,皆無細胞毒性,這表示P5和P6胜肽與Gh-TDHR46E 的組合可以增強Gh-TDHR46E的細胞毒性效力。此外,P6可以提高滲透性增加治療效果。

英文摘要

Thermostable direct hemolysin (TDH) is a pore-forming toxin produced by Grimontia hollisae. However, this toxin protein lacks selective cytotoxicity. To specify the anti-tumor activity and reduce side effects, we tried to prepare TDH-tumor targeting toxin protein as a suitable immunotoxin. Because the Gh-TDHR46E mutation reduced bioactivities and side reactions, it has potential as an anticancer agent. In this study we used THD-based protein TDHR46E to design the corresponding TDH-tumor targeting proteins. At TDH R46E, C-terminal was added with targeting peptides. To target TDHR46E precisely to tumor cells, aminopeptidase P (APaseP) and neuropilin-1(Nrp1) receptor such as PEGA (P5), iRGD (P6) were selected as peptides that targeted breast cancer. The cytotoxic activity of Gh-TDHR46E-P5 and Gh-TDHR46E-P6 was evaluated using receptor-positive cell lines such as MDA-MB-231 and MCF7; receptor-negative tumor cell line such as BT474. The results showed apparent cytotoxic on MDA-MB-231and MCF7 cells but not on BT474 cells. In contrast, Gh-TDHR46E treatment was non-cytotoxic on all tumor cell lines, indicating enhanced cytotoxic efficacy of Gh-TDHR46E by combination of P5 and P6 peptides to Gh-TDHR46E. Furthermore, P6 can increase internalization to increase treatment effects significantly. These data may open new avenues for breast cancer therapy.

主题分类 生物科技學院 > 生物科技學系暨研究所
生物農學 > 生物科學
参考文献
  1. 1. Richard L. Guerrant, David H. Walker, and Peter F. Weller (2011). Tropical Infectious Diseases (Third Edition). SAUNDERS of Elsevier Inc.
    連結:
  2. 4. Abbott S. L. & Janda, J. M. (1994). Severe gastroenteritis associated with Vibrio hollisae infection: report of two cases and review. Clin Infect Dis 18, 310–312.
    連結:
  3. 5. Thompson F. L., Hoste B., Thompson C. C., Goris J., Gomez-Gil B., Huys L., De Vos P. & Swings J. (2002). Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. J Syst Evol Microbiol 52, 2015–2022.
    連結:
  4. 6. Lingling Z., & Orth K. (2013).Virulence determinants for Vibrio parahaemolyticus infection. Current Opinion in Microbiology 16(1):70-77.
    連結:
  5. 7. Yanagihara I., Nakahira K., Yamane T., Kaieda S., Mayanagi K., Hamada D., Fukui T., Ohnishi K., Kajiyama S., Shimizu T., Sato M., Ikegami T., Ikeguchi M., Honda T., and Hashimoto H. (2010). Structure and Functional Characterization of Vibrio parahaemolyticus Thermostable Direct Hemolysin. J. Biol. Chem 285: 16267.
    連結:
  6. 8. Gilbert R.J.C., Rossjohn J., Parker M.W., Tweten R.K., Morgan P.J., Mitchell T.J., Errington N., Rowe A.J., Andrew P.W., Byron O. (1998). Self-interaction of pneumolysin, the pore forming protein toxin of Streptococcus pneumoniae. J. Mol. Biol 284, pp. 1223–1237.
    連結:
  7. 9. Song L.Z., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. (1996). Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, pp. 1859–1866
    連結:
  8. 11. Arrhenius S. (1907). Immunochemistry: The Application of the Principles of Physical Chemistry to the Study of the Biological Antibodies. Macmillan Publishing Co, pp. 187–188.
    連結:
  9. 12. Huang SC., Wang YK., Huang WT., Kuo TM., Yip BS., Li TH., Wu TK. (2015). Potential antitumor therapeutic application of Grimontia hollisae thermostable direct hemolysin mutants. Cancer Science 106(4):447-454.
    連結:
  10. 13. Hsiung CA. (2015). Associations between Medical. Conditions and Breast Cancer Risk in Asians: A. Nationwide Population-Based Study in Taiwan. PLoS. ONE 10(11): e0143410.
    連結:
  11. 14. Perou CM., Sørlie T., Eisen MB., van de Rijn M., Jeffrey SS., Rees CA. (2000).Molecular portraits of human breast tumours. Nature 406(6797):747–752.
    連結:
  12. 15. Santa-Maria C. A. & W. J. Gradishar. (2015). Changing treatment paradigms in metastatic breast cancer: Lessons learned. JAMA Oncology 1(4):528-534.
    連結:
  13. 16. Sennino B. & McDonald DM. (2012). Controlling escape from angiogenesis inhibitors. Nat Rev Cancer 12: 699-709,
    連結:
  14. 17. Jayson GC., Hicklin DJ., Ellis LM. (2012). Antiangiogenic therapy-evolving view based on clinical trial results. Nat Rev Clin Oncol 9: 297-303.
    連結:
  15. 18. Christine A., Hassan R., & Pastan I. (2015). Advances in Anticancer Immunotoxin Therapy. The Oncologist. Feb 20(2):176-85.
    連結:
  16. 19. Swati C., Mathew M., & Verma R. S. ( 2011).Therapeutic potential of anticancer immunotoxins. Drug Discovery Today 16(11–12):495-503.
    連結:
  17. 20. Manoukian G., Hagemeister F. (2009). Denileukin diftitox: a novel immunotoxin. Expert Opin. Biol. Ther 9, pp. 1445–1451
    連結:
  18. 21. Eklund J.W., Kuzel T.M., Denileukin diftitox: a concise clinical review. (2005). Expert Rev. Anticancer 5, 33–38.
    連結:
  19. 22. Brown KC. (2010). Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications. Curr Pharm Des 16 (9): 1040-1054.
    連結:
  20. 23. Deutscher SL. (2010). Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110 (5): 3196-3211.
    連結:
  21. 24. Lu RM., Chang YL., Chen MS., Wu HC. (2011). Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32 (12): 3265-3274.
    連結:
  22. 25. Mancuso A., Sternberg CN. (2005). Colorectal cancer and antiangiogenic therapy: what can be expected in clinical practice. Crit Rev Oncol.Hematol 55 (1): 67-81.
    連結:
  23. 26. Trail PA., King HD., Dubowchik GM. (2003). Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol Immunother 52 (5): 328-337.
    連結:
  24. 27. Li ZJ., Cho CH. (2010). Development of peptides as potential drugs for cancer therapy. Curr Pharm Des 16 (10): 1180-1189.
    連結:
  25. 28. Lee S., Xie J., Chen X. (2010). Peptide-based probes for targeted molecular imaging. Biochemistry 49 (7): 1364-1376.
    連結:
  26. 29. Froidevaux S., Eberle A. N. (2002). Biopolymers 66: 161–183.
    連結:
  27. 30. Jakob R., Srimanee A, & Langel Ü. (2012). Applications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies. Pharmaceuticals 5(9):991-1007.
    連結:
  28. 31. Ruoslahti E., Bhatia SN., Sailor MJ. (2010). Targeting of drugs and nanoparticles to tumors. J Cell Biol 188 (6): 759-768.
    連結:
  29. 32. Li ZJ., Wu WK., Ng SS., Yu L., Li HT., Wong CC., Wu YC., Zhang L., Ren SX., Sun XG., Chan KM. (2010). A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J Control Release 148 (3): 292-302.
    連結:
  30. 34. Zhang D., Hedlund EM., Lim S., Chen F., Zhang Y., Sun B., Cao Y. (2011). Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity. Proc Natl Acad Sci U S A 108 (10): 4117-4122.
    連結:
  31. 35. Cao Y., Langer R. (2010). Optimizing the delivery of cancer drugs that block angiogenesis. Sci Transl Med 2 (15): 15ps13.
    連結:
  32. 36. Markus E.& Ruoslahti E. (2002). Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci U S A Feb 19;99(4):2252-7.
    連結:
  33. 37. Hitzerd SM1., Verbrugge SE., Ossenkoppele G., Jansen G., Peters GJ. (2014). Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 46(4):793-808.
    連結:
  34. 39. Cordova A., Woodrick J., Grindrod S., Zhang L., Saygideger-Kont Y., Wang Kan., DeVito S., Daniele S., Paige M. & Brown M. L. (2016). Aminopeptidase P mediated targeting forbreast tissue specific conjugate delivery. Bioconjugate Chem. Just Accepted Manuscript .
    連結:
  35. 40. Myrberg H., Zhang L., Mäe M, Langel U. (2008). Design of a Tumor-Homing Cell-Penetrating Peptide. Bioconjugate Chemistry 19(1):70-75.
    連結:
  36. 41. Heldin CH., Rubin K., Pietras K., Ostman A (2004). High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–13..
    連結:
  37. 42. Geretti E., Shimizu A., Klagsbrun M. (2008). Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis 11:31–39.
    連結:
  38. 43. Pellet-Many C., Frankel P., Jia H., Zachary I. (2008). Neuropilins: structure, function and role in disease. Biochem J. 411:211–226.
    連結:
  39. 44. Larrivée B., Freitas C., Suchting S., Brunet I., Eichmann A. (2009). Guidance of vascular development: lessons from the nervous system. Circ Res 104:428–441.
    連結:
  40. 45. Prud'homme GJ., Glinka Y. (2012). Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 3:921–39.
    連結:
  41. 46. Latil A., Bièche I., Pesche S., Valéri A., Fournier G., Cussenot O., Lidereau R (2000). VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. J Cancer 89:167–171.
    連結:
  42. 47. Hansel DE., Wilentz RE., Yeo CJ., Schulick RD., Montgomery E., Maitra A. (2004). Expression of neuropilin-1 in high-grade dysplasia, invasive cancer, and metastases of the human gastrointestinal tract. Am J Surg Pathol 28:347–356.
    連結:
  43. 48. Bielenberg DR., Pettaway CA., Takashima S., Klagsbrun M. (2006). Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res 312:584–593.
    連結:
  44. 49. Teesalu T., Sugahara KN, Ruoslahti E (2013). Tumor-penetrating peptides. Front Oncol 3:216.
    連結:
  45. 51. Sugahara KN., Teesalu T., Karmali P. P., Kotamraju V. R., Agemy L., Greenwald DR.& Ruoslahti E.(2010). Co-administration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science (New York, N.Y.) 328(5981):1031-1035.
    連結:
  46. 52. Peng L., Wang B., Ren P. (2005). Colloids & Surfaces B. Biointerfaces 45:108–111
    連結:
  47. 53. Svensen N., Walton JG., Bradley M. (2012). Peptides for cell-selective drug delivery. Trends Pharmacol. Sci 33 pp. 186–192.
    連結:
  48. 2. Hickman F. W., Farmer J. J. III., Hollis D. G, Fanning G. R., Steigerwalt A. G., Weaver R. E. & Brenner D. J. (1982). Identification of Vibrio hollisae sp. nov. from patients with diarrhea. J Clin Microbiol 15, 395–401.
  49. 3. Miliotis M. D., Tall B. D. & Gray R. T. (1995). Adherence to and invasion of tissue culture cells by Vibrio hollisae. Infect Immun 63, 4959–4963.
  50. 10. Miwatani T., Takeda Y., Sakurai J., Yoshihara A., Taga S. (1972) . Immun 6, 1031–1033.
  51. 33. Ullah MF. (2008). Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev 9 (1): 1-6.
  52. 38. Lasch J., Moschner S., Sann H., Zellmer S., Koelsch R. (1998). Biol Chem 379:705–709.
  53. 50. Teesalu T., Sugahara KN., Kotamraju VR., Ruoslahti E .(2009). C-end Rule: Peptides with C-terminal arginine cause neuropilin-1 dependent internalization, vascular leakage and tissue penetration. Proc Natl Acad Sci U S A 106:16157–62.
  54. 54. Curnis F., Arrigoni G., Sacchi A., Fischetti L., Arap W., Pasqualini R.& Corti A. (2002). Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62 pp. 867–874.