题名

應用瞬時脈率變異度於 未成年人之自體調節探討

并列篇名

Use of instantaneous pulse rate variability during autoregulation in children

作者

黃柏勳

关键词

體溫調節 ; 發燒 ; 瞬時脈率變異度 ; Thermoregulation ; Fever ; Instantaneous Pulse Rate Variability

期刊名称

交通大學生醫工程研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

蕭子健

内容语文

英文

中文摘要

體溫是人類生理機轉中相當重要的自體調節指標,亦是一般診所中判定病徵的要項之一。下視丘為體溫調節中樞,透過自律神經系統(Autonomic nervous system,ANS)來調控身體各處升降溫之機轉。一般在發燒時會產生周邊血管收縮、體溫上升、心跳加快、交感神經興奮、偶爾血壓增加等等諸多的生理反應,因此觀察ANS中交感與副交感神經系統與體溫之間的變化就顯得重要。臨床上使用非侵入量測心率變異程度,觀察ANS活性變化,在特定條件下(平躺狀態或傾斜床實驗)亦能使用脈率變異度協助評估。然受限於心跳週期的時間尺度,頻譜圖顯示有所限制。為能突破此限制,瞬時脈率變異度(Instantaneous pulse rate variability,iPRV)被提出,此法應用經驗模態分解來進行脈波訊號(photoplethysmography, PPG)前處理,解構出特定頻帶的內生性特徵函數(Intrinsic mode function)後再計算瞬時週期(Instantaneous period),成功地突破時間尺度的限制,得到更高解析的資訊。 本研究在國立交通大學人體與行為研究倫理委員會(Research Ethics Committee for Human Subject Protection, NCTU)同意下並經臨床醫師確認,收集15位發燒病人(體溫大於等於37.9 ℃)與15位未發燒者(體溫小於37.9 ℃)之PPG訊號,分別命名為Fever group與Control group,並依序進行iPRV分析。結果顯示,在頻譜圖的解讀上,不僅僅能從低頻區(0.04Hz~0.15Hz)與高頻區(0.15Hz~0.40Hz)的比值變化看到ANS的活化程度,而正規化條件(原為0.04Hz~0.40Hz)加入特高頻區(0.40Hz~0.90Hz)後,Fever group與Control group的高頻區比值分別為0.19 ±0.07與0.31±0.12,具有統計顯著差異(p<0.05)。然而特高頻區在正規化條件中所隱含意義,以及體溫高低、周邊循環以及特高頻區的關聯性為何,仍需更多實驗來驗證。因此,藉著比對iPRV與心率變異度之間的差異來發掘更多體溫調節與周邊循環的機轉是接續的研究重點。

英文摘要

The body temperature is one of the important indices of human body autoregulation, it is also a discriminate assessment of clinical disease. The body temperature is controlled by the hypothalamus, which also domains the autonomic nervous system (ANS). When somebody has a fever, the body temperature abnormal raises, vasoconstrictions, heart rate increases, the sympathetic (SNS) is activation, the blood pressure increases, etc. Therefore, it is important to indicate what regulation between the body temperature and ANS. The common non-invasive indicator for ANS is based on heart rate variability (HRV). Beside it, pulse rate variability (PRV) also can be a non-invasive indicator for ANS under some conditions (e.g. supine or tilt-up position). However, these two methods have limitation on spectral analysis because of the beat-to-beat timescale property. For higher resolution on spectral analysis, instantaneous PRV (iPRV) was proposed. iPRV adopts empirical mode decomposition and PRV technology to break the restriction of timescale and obtain the higher resolution information on spectral analysis. This study, which was approved by the Research Ethics Committee for Human Subject Protection and confirmed by a pediatrician, was to acquire the photoplethysmography (PPG) signal of 15 fever patients (body temperature ≧ 37.9 ℃) and 15 feverless people (body temperature < 37.9 ℃), assigned to Fever group and Control group, respectively . The signal was used for iPRV analysis. The analysis results show the conventional ranges (Low frequency, LF: 0.04~0.15 Hz; High frequency, HF: 0.15~0.4Hz) of iPRV also observe the activities of ANS. As well, the modified indices including ultra-band (Very high frequency, VHF: 0.4~0.9 Hz) are significant difference (p-value <0.05) between fever and feverless symptoms (i.e. normalized HF in Fever group and Control group are 0.19 ±0.0 and 0.31±0.12, respectively). Based on the statistical evidence, VHF is potential to provide indicator of thermoregulation on peripheral circulation. Nevertheless, it still need more experiments to examine. Therefore, to compare the difference between iPRV and HRV for obtaining more mechanisms of thermoregulation is an important point of following research.

主题分类 醫藥衛生 > 醫藥總論
資訊學院 > 生醫工程研究所
生物農學 > 生物科學
参考文献
  1. [1] K. Nakamura, “Central circuitries for body temperature regulation and fever,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301:1207-1228, Sep, 2011.
    連結:
  2. [2] L. K. McCorry, “Physiology of the autonomic nervous system,” American journal of pharmaceutical education, 71(78):1-11, Aug, 2007.
    連結:
  3. [4] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger, and R. J. Cohen, “Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control,” Science, 213:220-222, 1981.
    連結:
  4. [5] M. Malik, “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” European Heart Journal, 17:354-381, 1996.
    連結:
  5. [6] E. Gil, M. Orini, R. Bailón, J. M. Vergara, L. Mainardi, and P. Laguna, “Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions,” Physiological Measurement, 31:1271-1290, Aug, 2010.
    連結:
  6. [7] S. Lu, H. Zhao, K. Ju, K. Shin, M. Lee, K. Shelley, and K. H. Chon, “Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information?”, Journal of clinical monitoring and computing, 22(1):23-29, 2008.
    連結:
  7. [8] J. Allen, “Photoplethysmography and its application in clinical physiological measurement.” Physiological measurement, 28(3), R1, 2007
    連結:
  8. [9] O. V. Korkushko, V. B. Shatilo, Y. Plachinda, and T. V. Shatilo, "Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability." Journal of the autonomic nervous system, 32(3):191-198, 1991.
    連結:
  9. [10] M. S. Silvetti, F. Drago, and P. Ragonese,"Heart rate variability in healthy children and adolescents is partially related to age and gender." International Journal of Cardiology, 81(2):169-174, 2001.
    連結:
  10. [12] J. J. Sollers, T. A. Sanford, R. Nabors-Oberg, C. A. Anderson, and J. F. Thayer, "Examining changes in HRV in response to varying ambient temperature." IEEE engineering in medicine and biology magazine, 21(4):30-34, 2002.
    連結:
  11. [14] C. -C. Chang, T. -C. Hsiao, and H. -Y. Hsu, “Frequency range extension of spectral analysis of pulse rate variability based on Hilbert–Huang transform,” Medical & Biological Engineering & Computing, 52:343-351, 2014.
    連結:
  12. [16] P. -C. Lin, K. -C. Hsu, C. -C. Chang, and T. -C. Hsiao, “Reliability of instantaneous pulse rate variability by using photoplethysmography,” Workshop on Biomedical Microelectronic Translational Systems Research (WBMTSR 2014) EPFL, Aug. 2014
    連結:
  13. [17] P. -C. Lin, P. -H. Huang, C. -C. Chang, H. -Y. Hsu, and T. -C. Hsiao, “A novel index of photoplethysmography by using instantaneous pulse rate variability during non-stationary condition,” Consumer Electronics - Taiwan (ICCE-TW), 2015 IEEE International Conference on, Jun. 2015, pp. 100 –101, doi: 10.1109/ICCE-TW.2015.7216799
    連結:
  14. [18] P. -C. Lin, C. -C. Chang, T. -C. Hsiao, and H. -Y. Hsu, “The circulation assessment of daily e-health by using instantaneous pulse rate variability during nonstationary conditions,” The 7th International Conference on eHealth, Telemedicine and Social Medicine, (eTELEMED 2015) IARIA, Feb, 2015, pp. 209–212, ISBN: 978-1-61208-384-1.
    連結:
  15. [19] J. R. Yeh, J. S. Shieh, and N. E. Huang. "Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method." Advances in Adaptive Data Analysis 2.02:135-156, 2010.
    連結:
  16. [20] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, 1:1-41, Jan. 2009.
    連結:
  17. [21] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, “On instantaneous frequency,” Advances in Adaptive Data Analysis, 1:177-229, Apr. 2009.
    連結:
  18. [23] C. -C. Chang, H. -Y. Hsu, and T. -C. Hsiao, “The interpretation of very high frequency band of instantaneous pulse rate variability during paced respiration,” Biomedical Engineering Online, 13:46-56, Apr. 2014.
    連結:
  19. [24] P. -C. Lin, C. -C. Chang, T. -C. Hsiao, and H. -Y. Hsu, “A short-term assessment of cardiac output by using instantaneous pulse rate variability ,“The 8th International Conference on eHealth, Telemedicine and Social Medicine, (eTELEMED 2016) IARIA, 2016, pp. 110-115, ISBN: 978-1-61208-470-1115
    連結:
  20. [3] Medicalook (n.d. ). “Autonomic nervous system,” Retrieved Dec 29, 2016, from http://www.medicalook.com/human_anatomy/systems/Autonomic_nervous_system.html
  21. [11] L. A. Fleisher, S. M. Frank, D. I. Sessler, C. Cheng, T. Matsukawa, and C. A. Vannier,. "Thermoregulation and heart rate variability." Clinical science, 90(2):97-103, 1996.
  22. [13] G. G. Berntson, Jr. Jt. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, "Heart rate variability: origins, methods, and interpretive caveats," Psychophysiology, 34:623-648, 1997.
  23. [15] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, H. H. Liu,“The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454:903-995, Mar, 1998.
  24. [22] W. Thalheimer and S. Cook. "How to calculate effect sizes from published research: A simplified methodology." Work-Learning Research, 2002.