题名

EGFR-TKI小分子標靶藥物治療非小細胞肺癌之細胞反應與藥物交互作用

并列篇名

The Study of NSCLC Cell Response and the Drug-Drug Interaction upon EGFR-TKI Small Molecular Treatment

作者

王祥宇

关键词

標靶藥 ; 肺癌 ; 葡萄糖皮質醇 ; 藥物交互作用 ; 健保資料庫 ; 抗藥性 ; EGFR-TKI ; lung cancer ; glucocorticoid ; drug-drug interaction ; NHIRD ; drug resistance

期刊名称

交通大學分子醫學與生物工程研究所學位論文

卷期/出版年月

2017年

学位类别

博士

导师

曾慶平;徐祖安

内容语文

繁體中文

中文摘要

愈來愈高的癌症發生率是當前醫學重要的課題,過去使用化學治療藥物常因為嚴重的副作用而讓人聞之卻步,近十年來因為標靶藥物的發展讓癌症治療有更佳的選擇。其中在發生率近85%的非小細胞肺癌的治療中,因為亞洲人中有很高的EGFR突變機率而使肺癌標靶藥物發揮了重要的治療效果,但是幾乎無可避免的在標靶藥物治療一段時間後,皆因為產生抗藥性突變而失效。過去大多數針對肺癌標靶藥抗藥性的研究著墨於發生在癌細胞中的抗藥性突變或篩選出其他穩定的抗藥性機制,而很少關注EGFR-TKI標靶藥物對肺癌細胞產生的藥物影響與細胞對藥物產生的反應機制。生物遭遇壓力時的第一個反應是求生存,在治療過程中,藥物對癌細胞而言即是一個高度的壓力來源。所以本研究針對非小細胞肺癌細胞在EGFR-TKI標靶藥物出現時的細胞反應與藥物對細胞產生的藥物影響進行探討。有2個主要發現:1)非小細胞肺癌細胞在遭遇EGFR-TKI時能短暫的增加細胞貼附相關的應急反應,干擾細胞貼附應急反應會使得EGFR-TKI藥物的細胞毒殺效能提升;2)非小細胞肺癌細胞在遭遇EGFR-TKI時會出現類固醇合成功能下降,若以葡萄糖固醇類藥物干擾此現象時,會導致非小細胞肺癌細胞受EGFR-TKI藥物引起的細胞凋亡消失,並於小鼠模式證實EGFR-TKI藥物功能下降,且進一步在台灣健保資料庫臨床數據分析中見到合併使用產生較高的癌症惡化風險。 綜合上述結果,本研究透過研究肺癌細胞遭遇EGFR-TKI標靶藥物時的細胞反應變化,發現了能提高EGFR-TKI標靶藥物效能的藥物合併策略與臨床上可能的藥物交互作用,期望藉此能讓肺癌病患更受益於標靶藥物治療。

英文摘要

The increasing incidence of cancer attracts more and more attention in medical research. In recent years, targeting therapeutics have shown promising efficacy in a variety of cancers. Lung cancer is the leading cause of cancer death in the world, and approximate 85% is of non-small cell lung cancer (NSCLC). The epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitors (TKIs) such as gefitinib, afatinib, and osimertinib have shown remarkable benefits in all stages of NSCLC patients harboring drug-sensitive mutations in the EGFR gene. In East Asian population, more than 50% NSCLC patients have such mutations. Unfortunately, almost all patients who initially responded to the EGFR-TKIs treatment eventually developed resistance to these target therapeutics. Several in vitro cell culture methods have been developed to study drug resistance mechanisms using cells obtained by prolonged drug treatment. However, relatively little is known how cancer cells would respond immediately upon EGFR targeting drugs. From the standpoints of cancer cells, striving to survive is the first priority when encountering anti-cancer drugs; and, we may hypothesis that cancer cell would use the cell emergency responses to defend drugs in some manners. This study focused on how the lung cancer cells respond upon EGFR-TKIs treatment and the consequence of interfering these cellular responses. There are two major findings in this study. First, emergency adhesion response occurred in NSCLC cells upon EGFR-TKI drug treatment, and the drug efficacy could be increased by interfering the cell emergency adhesion response. Second, an EGFR-TKI-induced downregulation of steroid biosynthesis pathway was identified. After this steroid biosynthesis pathway was reversed by glucocorticoids, the EGFR-TKI drug-induced cell apoptosis was totally abolished in cell-based and in vivo animal tests. These laboratory studies were translated into clinical application and a surprisingly increased risk of disease progression was observed in lung cancer patients receiving concomitant use of gefetinib and glucocorticoids (GCs) from a retrospective study employing Taiwan National Health Insurance Research Database. In conclusion, we found that drug induced cell responses were important to the application of EGFR-targeting therapy. Findings from this study may be translated into clinical applications to enhance the efficacy of EGFR-TKI therapy by simultaneously interfering cell emergency adhesion response. In addition, the unnecessary compromising effects caused by GCs use in TKI therapy may be minimized by awareness of such a potential effect.

主题分类 醫藥衛生 > 基礎醫學
生物科技學院 > 分子醫學與生物工程研究所
参考文献
  1. 1.Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol. 2010; 2010: 214074. doi: 10.1155/2010/214074.
    連結:
  2. 2.Organization WH. (2015). Cancer.
    連結:
  3. 3.American Cancer Society I. (2015). What are the key statistics about lung cancer?
    連結:
  4. 5.Breathnach OS, Freidlin B, Conley B, Green MR, Johnson DH, Gandara DR, O'Connell M, Shepherd FA, Johnson BE. Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: sobering results. J Clin Oncol. 2001; 19: 1734-42. doi:
    連結:
  5. 7.Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304: 1497-500. doi: 10.1126/science.1099314.
    連結:
  6. 8.Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350: 2129-39. doi: 10.1056/NEJMoa040938.
    連結:
  7. 9.Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Janne PA, Lynch T, Johnson BE, Miller VA. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010; 28: 357-60. doi: 10.1200/JCO.2009.24.7049.
    連結:
  8. 10.Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005; 352: 786-92. doi: 10.1056/NEJMoa044238.
    連結:
  9. 11.Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009; 28 Suppl 1: S24-31. doi: 10.1038/onc.2009.198.
    連結:
  10. 13.Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005; 2: e73. doi: 10.1371/journal.pmed.0020073.
    連結:
  11. 14.Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013; 19: 1389-400. doi: 10.1038/nm.3388.
    連結:
  12. 15.Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007; 104: 20932-7. doi: 10.1073/pnas.0710370104.
    連結:
  13. 16.Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007; 316: 1039-43. doi: 10.1126/science.1141478.
    連結:
  14. 18.Ogino A, Kitao H, Hirano S, Uchida A, Ishiai M, Kozuki T, Takigawa N, Takata M, Kiura K, Tanimoto M. Emergence of epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non small cell lung cancer cell line. Cancer Res. 2007; 67: 7807-14. doi: 10.1158/0008-5472.CAN-07-0681.
    連結:
  15. 19.Cortot AB, Repellin CE, Shimamura T, Capelletti M, Zejnullahu K, Ercan D, Christensen JG, Wong KK, Gray NS, Janne PA. Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 2013; 73: 834-43. doi: 10.1158/0008-5472.CAN-12-2066.
    連結:
  16. 20.Aparo MS. Present Role of Corticosteroids as Antiemetics. Recent Results in Cancer Research. 1991; 121: 91-100. doi: 10.1007/978-3-642-84138-5_11.
    連結:
  17. 21.Rutz HP. Effects of corticosteroid use on treatment of solid tumours. The Lancet. 2002; 360: 1969-70. doi: 10.1016/s0140-6736(02)11922-2.
    連結:
  18. 22.Walsh D, Avashia J. Glucocorticoids in clinical oncology. Cleve Clin J Med. 1992; 59: 505-15. doi:
    連結:
  19. 23.Herr I, Pfitzenmaier J. Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. The Lancet Oncology. 2006; 7: 425-30. doi: 10.1016/s1470-2045(06)70694-5.
    連結:
  20. 24.Mayanagi T, Morita T, Hayashi K, Fukumoto K, Sobue K. Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton. J Biol Chem. 2008; 283: 31183-96. doi: 10.1074/jbc.M801606200.
    連結:
  21. 25.Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells. 2013; 2: 202-23. doi: 10.3390/cells2020202.
    連結:
  22. 26.Mattern J, Büchler MW, Herr I. Cell Cycle Arrest by Glucocorticoids May Protect Normal Tissue and Solid Tumors from Cancer Therapy. Cancer Biology & Therapy. 2014; 6: 1341-50. doi: 10.4161/cbt.6.9.4765.
    連結:
  23. 27.Herr I, Gassler N, Friess H, Buchler MW. Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis. 2007; 12: 271-91. doi: 10.1007/s10495-006-0624-5.
    連結:
  24. 28.Zhang C, Mattern J, Haferkamp A, Pfitzenmaier J, Hohenfellner M, Rittgen W, Edler L, Debatin K-M, Groene E, Herr I. Corticosteriod-induced chemotherapy resistance in urological cancers. Cancer Biology & Therapy. 2014; 5: 59-64. doi: 10.4161/cbt.5.1.2272.
    連結:
  25. 29.Herrstedt J, Roila F, Group EGW. Chemotherapy-induced nausea and vomiting: ESMO clinical recommendations for prophylaxis. Ann Oncol. 2008; 19 Suppl 2: ii110-2. doi: 10.1093/annonc/mdn105.
    連結:
  26. 30.Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008; 358: 2482-94. doi: 10.1056/NEJMra0706547.
    連結:
  27. 31.Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102: 15545-50. doi: 10.1073/pnas.0506580102.
    連結:
  28. 32.Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer. 2007; 7: 54-60. doi: 10.1038/nrc2044.
    連結:
  29. 33.Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313: 1929-35. doi: 10.1126/science.1132939.
    連結:
  30. 34.Hsing AW, Ioannidis JP. Nationwide Population Science: Lessons From the Taiwan National Health Insurance Research Database. JAMA Intern Med. 2015; 175: 1527-9. doi: 10.1001/jamainternmed.2015.3540.
    連結:
  31. 35.Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, Bernad A, Gonzalez MA. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011; 18: 985-95. doi: 10.1038/cdd.2010.167.
    連結:
  32. 36.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28: 27-30. doi:
    連結:
  33. 37.Ge Y, Deng T, Zheng X. Dynamic monitoring of changes in endothelial cell-substrate adhesiveness during leukocyte adhesion by microelectrical impedance assay. Acta Biochimica et Biophysica Sinica. 2009; 41: 256-62. doi: 10.1093/abbs/gmp009.
    連結:
  34. 38.Atienza JM, Zhu J, Wang X, Xu X, Abassi Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen. 2005; 10: 795-805. doi: 10.1177/1087057105279635.
    連結:
  35. 39.Hsu PF, Sung SH, Cheng HM, Yeh JS, Liu WL, Chan WL, Chen CH, Chou P, Chuang SY. Association of clinical symptomatic hypoglycemia with cardiovascular events and total mortality in type 2 diabetes: a nationwide population-based study. Diabetes Care. 2013; 36: 894-900. doi: 10.2337/dc12-0916.
    連結:
  36. 40.Lin JC, Liang WM. Mortality and complications after hip fracture among elderly patients undergoing hemodialysis. BMC Nephrol. 2015; 16: 100. doi: 10.1186/s12882-015-0099-0.
    連結:
  37. 41.Huang ST, Lin CL, Chang YJ, Sher YP, Wu MJ, Shu KH, Sung FC, Kao CH. Pneumococcal pneumonia infection is associated with end-stage renal disease in adult hospitalized patients. Kidney Int. 2014; 86: 1023-30. doi: 10.1038/ki.2014.79.
    連結:
  38. 42.WHO. (2014). WHO Collaborating Centre for Drug Statistics Methodology, Guidelines for ATC classification and DDD assignment, 2015. Oslo. In: WHO, ed.
    連結:
  39. 43.Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res. 2011; 46: 399-424. doi: 10.1080/00273171.2011.568786.
    連結:
  40. 44.Parsons LS. (2006). Ovation research Group, SAS users group (SUGI) paper 165-29. Ovation research Group, SAS users group (SUGI) paper 165-29.
    連結:
  41. 45.Storch K, Cordes N. Focal adhesion-chromatin linkage controls tumor cell resistance to radio- and chemotherapy. Chemother Res Pract. 2012; 2012: 319287. doi: 10.1155/2012/319287.
    連結:
  42. 46.Wu DW, Wu TC, Wu JY, Cheng YW, Chen YC, Lee MC, Chen CY, Lee H. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene. 2014; 33: 4385-95. doi: 10.1038/onc.2013.389.
    連結:
  43. 47.Bellis SL. Variant glycosylation: an underappreciated regulatory mechanism for beta1 integrins. Biochim Biophys Acta. 2004; 1663: 52-60. doi: 10.1016/j.bbamem.2004.03.012.
    連結:
  44. 48.She S, Xu B, He M, Lan X, Wang Q. Nm23-H1 suppresses hepatocarcinoma cell adhesion and migration on fibronectin by modulating glycosylation of integrin beta1. J Exp Clin Cancer Res. 2010; 29: 93. doi: 10.1186/1756-9966-29-93.
    連結:
  45. 49.Kobayashi S, Okumura N, Nakamoto T, Okada M, Hirai H, Nagai K. Activation of pp60c-src depending on cell density in PC12h cells. J Biol Chem. 1997; 272: 16262-7. doi:
    連結:
  46. 50.Jarvis GE, Bihan D, Hamaia S, Pugh N, Ghevaert CJ, Pearce AC, Hughes CE, Watson SP, Ware J, Rudd CE, Farndale RW. A role for adhesion and degranulation-promoting adapter protein in collagen-induced platelet activation mediated via integrin alpha(2) beta(1). J Thromb Haemost. 2012; 10: 268-77. doi: 10.1111/j.1538-7836.2011.04567.x.
    連結:
  47. 51.Johnson ML, Riely GJ, Rizvi NA, Azzoli CG, Kris MG, Sima CS, Ginsberg MS, Pao W, Miller VA. Phase II trial of dasatinib for patients with acquired resistance to treatment with the epidermal growth factor receptor tyrosine kinase inhibitors erlotinib or gefitinib. J Thorac Oncol. 2011; 6: 1128-31. doi: 10.1097/JTO.0b013e3182161508.
    連結:
  48. 52.Reed NI, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, Sheppard D. The alphavbeta1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med. 2015; 7: 288ra79. doi: 10.1126/scitranslmed.aaa5094.
    連結:
  49. 53.Alghisi GC, Ponsonnet L, Ruegg C. The integrin antagonist cilengitide activates alphaVbeta3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS One. 2009; 4: e4449. doi: 10.1371/journal.pone.0004449.
    連結:
  50. 56.Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014; 15: 49-63. doi: 10.1038/nrm3722.
    連結:
  51. 57.Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010; 52: 698-704. doi: 10.1016/j.jhep.2009.12.024.
    連結:
  52. 58.Al-Harbi S, Choudhary GS, Ebron JS, Hill BT, Vivekanathan N, Ting AH, Radivoyevitch T, Smith MR, Shukla GC, Almasan A. miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies. Mol Cancer. 2015; 14: 185. doi: 10.1186/s12943-015-0460-8.
    連結:
  53. 59.de Giorgio A, Krell J, Harding V, Stebbing J, Castellano L. Emerging roles of competing endogenous RNAs in cancer: insights from the regulation of PTEN. Mol Cell Biol. 2013; 33: 3976-82. doi: 10.1128/MCB.00683-13.
    連結:
  54. 60.Laboratories K. (2014). KEGG Database. In: Laboratories K, ed.
    連結:
  55. 4.Ministry of Health and Welfare. (2015). Cause of Death Statistics.
  56. 6.American Cancer Society I. (2015). Non-small cell lung cancer survival rates by stage.
  57. 12.Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H, Fujii T, Kuwano M. Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther. 2004; 3: 465-72. doi:
  58. 17.Ma C, Wei S, Song Y. T790M and acquired resistance of EGFR TKI: a literature review of clinical reports. J Thorac Dis. 2011; 3: 10-8. doi: 10.3978/j.issn.2072-1439.2010.12.02.
  59. 54.Ministry of Health and Welfare T. (2015). Cancer Administration Year Report.
  60. 55.Herr I, Ucur E, Herzer K, Okouoyo S, Ridder R, Krammer PH, von Knebel Doeberitz M, Debatin KM. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res. 2003; 63: 3112-20. doi: