英文摘要
|
In order to establish the suspension cells that have the good ability in differentiation, we evaluated effects of the cultivate method of test plant, plant age, organ explants, callus source and the composition of plant growth regulator on callus induction, somatic embryogenesis, suspension cell proliferation and cell cluster differentiation. The seeds, Solanum lycopersicum cv. Known-You 933, cultivated in the pot or in vitro. 8, 22, 43-day-old plants after germination offered as the test plants. Hypocotyl and radicle of 8-day-old plants, the upper, middle and basal section of the stem and the root section of 22, 43-day-old plants offered as explants. In order to compare the effect of the cultivate method of test plant, plant age and organ explants on callus induction. The above-mentioned explants cultured on CS-1 medium containing 2 mg/l NAA and 4 mg/l Kinetin for 22 days. 43-day-old plants in vitro had the best result in callus formation rate. Callus formation rate of the upper, middle and basal section of stem were 98%, 96% and 90%, and the fresh weight of callus per explant were 0.314 g, 0.543 g and 0.207 g. compared the somatic embryogenesis rate of callus induced from the explants of the different age of plant. 0.02 g and 0.03 g fresh weight of callus offered as the explants, cultured on CS-1 solid medium containing 10 mg/l NAA or 0.5 mg/l IAA and 3.5 mg/l BA respectively. The result indicated that callus induced from 43-day-old-plant cultured on 0.5 mg/l NAA and 3.5 mg/l BA was the best in somatic embryogenesis. Somatic embryogenesis rate of the upper, middle and basal section of stem were 82.2%, 93.18% and 100%; the numbers of somatic embryo per explant were 1.42, 2.93 and 3.37. In comparison of the suspension cell number and cell proliferation rate among the callus induced from each explant of the different age of plants. Callus induced from the middle fragment of 43-day-old plants showed the best result in the number of suspension cell, which about 5.23×106 cells per gram callus, the proliferation rate of cell was the best, too. The cell proliferation rate in primary culture, the first subculture and the second subculture were 319%, 716.7% and 503.3%. Compared the differentiation rate of cell cluster differentiated from the suspension cells among the callus induced from each explant of the different age of plants. The suspension cells suspended from the callus induced from the basal fragment of stem of 43-day-old plants was the best, which differentiated 480 cell clusters per milliliter medium. Summarize the above-mentioned, the results indicated that the plant age and organ explants had a great influence on induction of callus and suspension cells that had the good ability in differentiation, that is, the mature plants were better than the young. In this study, it’s found that (1) In somatic embryogenesis, callus induced from the basal fragments of stem of 43-day-old plants in vitro offered as the explants, and cultured on CS-1 medium containing 0.5 mg/l IAA and 3.5 mg/l BA for 14 days. It could induced the somatic embryos directly, which about 91.8% in the rate of somatic embryogenesis. (2) In subculture of suspension cell and differentiation of cell cluster, the suspension cells cultured in CS-1 liquid medium containing 5 mg/l NAA, the cell proliferation rate in subculture was 2.1-6.1 times. While the suspension cells cultured in CSW-1 liquid medium containing 15 mg/l NAA could differentiated 450 cell clusters per milliliter medium.
|
参考文献
|
-
陳季謙 (2008) 阿拉伯芥下胚軸對生長素之年齡專一性反應的分子特性分析。國立成功大學生命科學系碩士論文。98頁。
連結:
-
陳威臣、夏奇鈮 (2004) 植物組織培養之擬胚化培養。行政院農業委員會農業試驗所技術服務。59: 33-36。
連結:
-
夏奇鈮、陳威臣、曹進義。2014。利用試管內培養(in vitro)輔助育種-抗耐病篩選之探討。農業試驗所技術服務季刊 100: 17-21。
連結:
-
劉依昌、謝明憲、王仕賢 ( 2007) 夏季小果番茄栽培技術。台南區農業專訊 62: 3-10。
連結:
-
Amar, A.B., P. Cobanov, K. Boonrod, G. Krczal, S. Bouzid, A. Ghorbel, G. M. Reusal (2007) Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of conditioned medium for cell proliferation. Plant cell Rep. 26: 1439-1447.
連結:
-
Anjum, N., A. Feroz, A. Subhani, M. S. Iqbal, M. Tariq, R. Hanif, T. Ashraf (2014) In vitro multiple shoot, root and callus induction from different explants in tomato (Lycopersicon esculentum Mill). J. Biol. Med. Sci. 2: 1-6.
連結:
-
Ashakiran, K., M. Chidambareswaran, V. Govindasamy, V. Sivankalyani, and S. Girija (2011) Somatic embryogenesis for agrobacterium mediated transformation of tomato-Solanum lycopersicon L. Int. J. Biotechnol. Appl. 3: 72-79.
連結:
-
Bhatia, P., N. Ashwath, T. Senaratna, and D. Midmore (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss. Org. 78: 1-21.
連結:
-
Brasileriro, A. C. R., L. Willadino, G. G. Carvalheira, and M. Guerra (1999) Callus induction and plant regeneration of tomato (Lycopersicon esculentum CV. IPA5) via anther culture. Cienc. Rural 29: 619-623.
連結:
-
Breidenbach, R. W., and A. J. Waring (1977) Response to chilling of tomato seedlings and cell in suspension culture. Plant Physiol. 60: 190-192.
連結:
-
Bressan, R. A., A. K. Handa, S. Handa, and P. M. Hasegawa (1982) Growth and water relation of culture tomato cells after adjustment to low external water potentials. Plant Physiol. 70: 1303-1309.
連結:
-
Campbell, J. K., R. B. Rogers, M. A. Lila, and J. W. Erdman, JR. (2006) Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycoersicon esculentum) for utilization in prostate cancer cell culture studies. J. Agric. Food Chem. 55: 747-755.
連結:
-
Chaudhry, Z., D. Habib, H. Rashid, and A. S. Qureshi (2004) Regeneration from various explants of in vitro seedling of tomato (Lycopersicon esculentum L., c.v. Roma). Pak. J. Biol. Sci. 7: 269-272.
連結:
-
Chaudhry, Z., S. Abbas, A. Yasmin, H. Rashid, H. Ahmed, and M. A. Anjum (2010) Tissue culture studies in tomato (Lycoersicon esculentum) var. moneymaker. Pak. J. Bot. 42: 155-163.
連結:
-
Chen, L. Z., and T. Adachi (1992) Plant regeneration via somatic embryogenesis from cotyledons protoplasts of tomato (Lycopersicon esculentum Mill.) Jpn. Soc. Breeding 44: 257-262.
連結:
-
DuPont, F. M., L. C. Staraci, B. Chou, B. R. Thomas, B. G. Williams, and J. B. Mudd (1985) Effect of chilling upon cell culture of tomato. Plant Physiol. 77: 64-68
連結:
-
Engelmann, N. J., J. K. Campbell, R. B. Rogers, S. I. Rupassara, P. J. Garlick, and M. A. Lila (2010) Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13 C]-carotenoid production. J. Agric. Food Chem. 58: 9979-9987.
連結:
-
Foolad M. R., (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss. Org. 76: 101-119.
連結:
-
Gill, R., K. A. Malik, M. H. Sanago, and P. K. Saxena (1995) Somatic embryogenesis and plant regeneration from seedling culture of tomato (Lycopersicon esculentum Mill.). J. Plant Physiol. 147: 273-276.
連結:
-
Godishala, V., L. Mangmoori, and R. Nanna (2011) Plant regeneration via somatic embryogenesis in cultivated tomato (Solanum lycopersicum L.). J. Cell Tissue Res. 11: 2521-2528.
連結:
-
Gubiš, J., Z. Lajchová, J. Faragó, and Z. Jureková (2003) Effect of genotype and explants type on shoot regeneration in tomato (Lycopersicon esculentum Mill.) in vitro. Czech J. Genet. Plant Breed. 39: 9-14.
連結:
-
Haapalainen, M., K. van Gestel, M. Pirhonen, and S. Taira (2009) Soluble plant cell signals induce the expression of the type III secretion of Pseudomonas syringae and upregulate the production of pilus protein HrpA. MPMI. 22: 282-290.
連結:
-
Handa, A. K., R. A. Bressan, S. Handa, and P. M. Hasegawa (1982) Characteristic of cultured tomato cells after prolonged exposure to medium containing polyethylene glycol. Plant Physiol. 69: 514-521.
連結:
-
Harish, M. C., S. Rajeevkuma, and R. Sathishkumar (2010) Efficient in vitro callus induction and regeneration of different tomato cultivars of India. Asian J. Biotechnol. 2: 178-184.
連結:
-
Hasan, S. A., S. Hayat, and A. Ahmad (2009) Screening of tomato (Lycopersicon esculentum) cultivars against cadmium through shotgun approach. J. Plant Interact. 4: 187-201.
連結:
-
Honée G., J. Buitink, T. Jabs, J. Kloe, F. Sijbolts, M. Apotheker, R. Weide, T. Sijen, M. Stuiver, and P. J. G. M. De wit (1998) Induction of defense-related responses in Cf9 tomato cells by the AVR9 elicitor peptide of Cladosporium fulvum is developmentally regulated. Plant physiol. 117: 809-820.
連結:
-
Jabeen, N., Z. Chaudhry, H. Rashid, and B. Mirza (2005) Effect of genotype and explants type of tomato (Lycopersicon esculentum Mill.). Pak. J. Bot. 37: 899-903.
連結:
-
Latif, M., N. Muntaz, M. R. Davey, and J. B. Power (1993) Plant regeneration from protoplasts isolated from cell suspension culture of the wild tomato , Lycopersicon chilense Dun. Plant Cell Tiss. Org. 32: 311-317.
連結:
-
Lu, C., N. J. Engelmann, M. A. Lila, and J. W. Erdman, JR. (2008) Optimization of Lycopene extraction from tomato cell suspension culture by response surface methodology. J. Agric. Food Chem. 56: 7710-7714.
連結:
-
Matsuda, Y., T. Nonomura, and H. Toyoda (2015) Callus-mediated plant regeneration from variegated leaves produced by mutagen-treated tomato meristem leaf primordia. VIII International Symposium on In Vitro Culture and Horticultural Breeding. (pp. 167-172)
連結:
-
Meredith, c. p. (1978) Selection and characterization of aluminum-resistant variants from tomato cell cultures. Plant Sci. Lett. 12: 25-34.
連結:
-
Namitha, K. K., and P. S. Negi (2013) Morphogenetic potential of tomato (Lycopersicon esculemtum) cv. ‘Arka Ahuti’ to plant growth regulators. Not. Sci. Biol. 5: 220-225.
連結:
-
Novák, F. J. and I. Mašková (1979) Apical shoot tip culture of tomato. SCI HORTIC-AMSTERDAM 10: 337-344.
連結:
-
Rashid, R., J. A. Bhat, Z. A. Bhat, W. A. Dar, and W. Shafi (2012) Callus formation and organogenesis of tomato (Solanum lycopersicon L.). Vegetos 25: 243-248.
連結:
-
Robertson G. H., N. E. Mahoney, N. Goodman, and A. E. Pavlath (1995) Regulator of lycopene formation in cell suspension culture of VFNT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature. J. Exp. Bot. 46: 667-673.
連結:
-
Sherkar, H. D., and A. M. Chavan (2014) Studies on callus induction and shoot regeneration in tomato. Sci. Res. Rept. 4: 89-93.
連結:
-
Shibili, R. A., A. Abu-Khadejeh, I. Makhadmeh, and M. J. Mohammad (2011) Growth and physiological responses of tomato (Lycopersicon esculentum Mill.) callus and cell suspension to in vitro induced salinity. Jordan J. Agric. Sci. 7: 300-311.
連結:
-
Sugimoto, K., S. P. Gordon, and M. Meyerowitz (2011) Regeneration in plants and animal: dedifferentiation, transdifferentiation, or just differentiation ? Tr. Cell Biol. 21: 212-218.
連結:
-
Tewes, A., K. Glund, R. Walther, and H. Reinbothe (1983) High yield isolation and rapid recovery of protoplasts from suspension culture of tomato (Lycopersicon esculentum). Z. Pjlanzenphysiol. Bd. 113: 141-150.
連結:
-
Toyoda H., K. Shimizu, K. Chatani, N. Kita, Y. Matsuda, and S. Ouchi (1989) Selection of bacterial wilt-resistant tomato through tissue culture. Plant Cell Rep. 8: 317-320.
連結:
-
van den Bulk, R. W. (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding – a review. Euphytica 56: 269-285.
連結:
-
王淑貞 (2001) 番茄組織培養與細胞培養及其在抗青枯病細胞系篩選之 應用。國立屏東科技大學熱帶農業研究所碩士論文。114頁。
-
余思葳、楊秀珠 (2011) 害物管理手冊(番茄篇)。行政院農業委員會農業藥物毒物試驗所。台中。48頁。
-
徐振權 (2002) 番茄癒傷組織誘導、細胞培養及體胚分化之研究。國立屏東科技大學熱帶農業研究所碩士論文。144頁。
-
曾家綸 (2005) 從消費者與農民權益論基改作物之管理與規範。國立政治大學法律學研究所碩士論文。259頁。
-
黃瑞彰、彭瑞菊、劉依昌、蔡孟旅、黃秀雯、楊藹華、鄭安秀 (2013) 小果番茄健康管理執行結果。102年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集。第39~45頁。農業試驗所特刊第181號。行政院農業委員會農業試驗所。187 頁。
-
张彦妮 (2006) 影响植物组织培养成功的因素。北方园艺 3: 132-133。
-
Abu-El-Heba, G. A., G. M. Hussein, and N. A. Abdalla (2008) Arapid and efficient tomato regeneration and transformation system. Agriculture and Forestry Research 58: 103-110.
-
Chung, I. S., C. H. Kim, K. I. Kim, S. H. Hong, J. H. Park, J. K. Kim, and W. Y. Kim (2000) Production of recombinant rotavirus VP6 from a suspension culture of transgenic tomato (Lycopersicon esculentum Mill.) cells. Biotechnol. Lett. 22: 251-255.
-
Cruz-Mendívil, A., J. Rivera-López, L. J. Germán-Báez, M. López-Meyer, S. Hernández-Verdugo, J. A. López-Valenzuela, C. Reyes-Moreno, and A. Valdez-Oritz (2011) A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. Micro-Tom from leaf explants. Hortscience 46: 1655-1660.
-
Farooq, A. M., B. Tabassum, I. A. Nasir, and T. Husnain (2010) Androgenesis induction , callogenesis regeneration and cytogenetic studies of tomato haploid. J. Agric. Res. 48: 201-215.
-
Manawadu, I. P., D. Nilanthi, and S. G. J. N. Senanayake (2014) Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill variety Thilina). Trop. Agr. Res. Ext. 17: 86-94.
-
Najafi M., (2013) The effects of medium modification on in vitro seed germination and callus induction in tomato. Master thesis, Universiti Teknologi Malaysia, Faculty of Bioscience and Medical engineering. 100pp.
-
Osman, M. G., E. A. Elhadi, and M. M. Khalafalla (2010) Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill. C.V. Omdurman) induced by thidiazuron. Afr. J. Biotechnol. 9: 4407-4413.
-
Patil, R. S., M. R. Davey, J. B. Power, and E. C. Cocking (2003) Development of long-term cell suspension cultures of wild tomato species, Lycopersicon chilense Dun. As regulator source of protoplast: an efficient protoplast-to-plant system. Indian J. Biotechnol. 2: 504-511.
-
Saad, A. I. M., and A. M. Elshahed (2012) Plant tissue culture media. p. 29-40. In: Leva, A., and L. M. R. Rinaldi (eds). Recent Advances in Plant in vitro Culture, Intech, Croatia.
-
Shah, S. H., S. Ali, S. A. Jan, J. Din, and G. M. Ali (2015) Callus induction, in vitro shoot regeneration and hairy root formation by the assessment of various plant growth regulators in tomato (Solanum lycopersicon Mill.). J. Anim. Plant Sci. 25: 528-538.
-
Soundararajan M. (2015) Induction of organogenesis in tomato callus (Lycopersicon esculentum Mill. CV. PKM-1) using plant growth promoters including triacontanol and antioxidants. Ind. J. Fund. Appl. Life Sci. 5: 81-87.
|