参考文献
|
-
[2] 林英盛,一個建立於網格式具高效能及高效率的群聚演算法,國立屏東科技大學資訊管理所碩士論文,2012。
連結:
-
[3] 張志豪,一個使用空間交會凝聚技術之有效率的網格式分群演算法,國立屏東科技大學資訊管理所碩士論文,2012。
連結:
-
[5] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan,P., “Automatic subspace clustering of high dimensional data for data mining applications,” Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 94-105, 1998.
連結:
-
[8] Karypis, G., Han, E.H., Kumar, V., “Chameleon: Hierarchical clustering using dynamic modeling,” IEEE Computer, vol. 32, no. 8, pp. 68-75, 1999.
連結:
-
[11] Tsai, C.F., Yen, C.C, “ANGEL: A new effective and efficient hybrid clustering technique for large databases,” Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 817-824, Springer, Heidelberg, 2007.
連結:
-
[12] Wang, W.Y, Muntz, R, “STING: A statistical information grid approach to spatial data mining,” VLDB, pp. 186-195, 1997.
連結:
-
[13] Zhang, T., Ramakrishnan, R, “BIRCH: An efficient Data Clustering Method for Very Large Databases,” Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 103-114. ACM Press, Montreal, Canada, 1996.
連結:
-
[14] Beauchemin, M., ”A density-based similarity matrix construction for spectral clustering,” Neurocomputing, vol. 151, no. 2, pp. 835-844, 2015.
連結:
-
[15] Bouveyron, C., and Brunet, C., “Model-based clustering of high-dimensional data: A review,” Computational Statistics & Data Analysis, vol. 71, pp. 92-106, 2014.
連結:
-
[16] Chen, X., “A new clustering algorithm based on near neighbor influence,” Expert Systems with Applications, vol. 42, pp. 7746-7758, 2015.
連結:
-
[17] Gan, G., and Ng, M. K.-P., “Subspace clustering using affinity propagation,” Pattern Recognition, vol. 48, no. 4, pp. 1451-1460, 2015.
連結:
-
[18] Hou, C., Nie, F., Yi, D., Tao, D., “Discriminative embedded clustering: a framework for grouping high-dimensional data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, pp. 1287-1299, 2014.
連結:
-
[19] İnkaya, T., Kayalıgil, S., Özdemirel, N.E., “Ant colony optimization based clustering methodology,” Applied Soft Computing, vol. 28, pp. 301-311, 2015.
連結:
-
[20] Kim, Y., Shim, K., Kim, M., and Lee, J. S., “DBCURE-MR: An efficient density-based clustering algorithm for large data using MapReduce,” Information systems, vol. 42, no. 3, pp. 15-35, 2014.
連結:
-
[21] Tsai, C.F., Huang, S.C., “An effective and efficient grid-based data clustering algorithm using intuitive neighbor relationship for data mining,” Machine Learning and Cybernetics (ICMLC), vol. 2, pp. 478-483, 2015.
連結:
-
中文文獻
-
[1] 葉恆甫,一個使用空間切割技術之有效率密度式分群演算法,國立屏東科技大學碩士論文,2010。
-
[4] 胡永慶,一個使用交錯的鄰近網格搜尋之有效率的新網格式分群演算法,國立屏東科技大學資訊管理所碩士論文,2013。
-
英文文獻
-
[6] Ester, M., Kriegel, H.P., Sander, J., Xu, X., “A density-based algorithm for discovering clusters in large spatial databases with noise, ” Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining (KDD',96), pp. 226-231, 1996.
-
[7] Guha, S., Rastogi, R., and Shim, K., “CURE: An efficient clustering algorithm for large databases,” Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 73-84, 1998.
-
[9] MacQueen, J.B., “Some methods for classification and analysis of multivariate observations,” Proc. 5th Berkeley Symp., vol. 1, pp. 281-297, 1967.
-
[10] Tsai, C.F., Liu, C.W., “KIDBSCAN: A new efficient data clustering algorithm for data mining in large databases,” Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 702–711, Springer, Heidelberg, 2006.
|