题名

利用 Bacillus spp. 防治草莓炭疽病及其可能機制探討

并列篇名

Study of Bacillus spp. on the control of strawberry anthracnose and possible mechanisms involved

作者

吳意眉

关键词

Bacillus spp. ; 拮抗微生物 ; 植物免疫 ; 草莓炭疽病 ; Bacillus spp. ; Antagonistic microorganisms ; Plant immunity ; Strawberry anthracnose

期刊名称

屏東科技大學植物醫學系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

林宜賢;鄭秋雄

内容语文

繁體中文

中文摘要

草莓炭疽病菌會造成草莓冠部腐爛,為嚴重影響草莓生產的真菌性病害。應用有益微生物來防治此病為可行之策略。本研究以 Bacillus spp. 來防治草莓炭疽病並探討可能參與機制。首先,以平板對峙試驗分析 Bacillus spp. PMB03、PMB04 及 PMB05 對草莓炭疽病菌菌絲生長情形的結果顯示此三菌株可抑制草莓炭疽病菌之生長。進而探討上述菌株之培養過濾液對草莓炭疽病菌孢子發芽之影響,顯示 PMB03 及 PMB05 之濾液雖不抑制孢子發芽,但可抑制發芽管長度。且 PMB03 可顯著進一步造成孢子發生細胞凋亡後菌絲膨大死亡之現象。PMB04 濾液處理後,孢子則完全喪失發芽能力。由上述結果說明三個菌株均可能具防治草莓炭疽病之潛力。隨後,以草莓果實進行接種之結果顯示,PMB03、PMB04 及 PMB05 之菌液均可顯著抑制草莓炭疽病菌的發生,其中 PMB04 菌液處理之防治效果最顯著。此外,為了解 PMB05 不具有造成草莓炭疽病菌死亡之情形,在草莓果實上卻具有顯著防治之效果,便進一步探討此些 Bacillus spp. 菌株是否具有強化草莓細胞免疫反應之效果。免疫反應分別以激活化氧及癒傷葡聚醣之累積這兩項指標訊號進行分析,結果顯示確實僅 PMB05 菌液可增加草莓細胞辨識炭疽病菌後所誘發激活化氧及癒傷葡聚醣之累積。最後,為確認上述不同機制之拮抗微生物何者於防治草莓炭疽病上扮演重要之角色。進一步以草莓植株進行接種二週後之結果說明僅 PMB04 及 PMB05 可降低病害之發生,其中 PMB05在市售草莓苗上接種草莓炭疽病菌四週之防治率更高達 63.4%。本研究推測 PMB04 造成孢子無法發芽及 PMB05 強化植物免疫分別扮演於採收後草莓果實及草莓苗防治草莓炭疽病之主要關鍵。未來將可以應用混合不同機制之 Bacillus spp. 菌株來防治草莓炭菌病的發生。

英文摘要

Anthracnose is a devastating fungal disease on strawberry production caused by Colletotrichum gloeoesporioides. Developing antagonistic microorganism to control this disease is a valuable strategy to reduce pesticide application. In this research, we attend to screen antagonistic Bacillus spp. strains on control strawberry anthracnose and possible mechanisms involved were also discussed. Firstly, in vitro inhibitory assay revealed that the hyphal growth of C. gloeosporioide SC01was inhibited by Bacillus spp. PMB03, PMB04 and PMB05. We further found that the cultural filtrate from PMB04 was lethal to the conidia of SC01. Growth of germ tube was suppressed by the filtrates from PMB03 and PMB05, and PMB03 filtrate further induced cell death via apoptosis. These results suggested that PMB03, PMB04, and PMB05 would be applied to control anthracnose on strawberry. Biocontrol efficacy on strawberry fruits exhibited the symptoms was significant suppressed by these three strains, especially the treatments of PMB04 and PMB05. To gain more insight of these antagonistic on plant immune system, the intensification of PAMP-triggered immunity was assayed through observing rapid ROS generation and callose deposition. Result showed the immunity was only intensified by the cells of PMB05 upon the inoculation of SC01. Moreover, the disease severity on strawberry seedlings was strongly reduced by PMB04 and PMB05. Especially, control efficacy of PMB05 on strawberry anthracnose reached 63.4% over one month. In addition, plant growth of strawberry seedlings were improved by PMB04 and PMB05. We concluded that lethal on conidia and intensification on plant immune responses were two important mechanisms to control strawberry anthracnose caused by Colletotrichum gloeoesporioides.

主题分类 農學院 > 植物醫學系所
生物農學 > 植物學
参考文献
  1. 3. 彭孟慈。2008。台灣產芒果與草莓炭疽病菌對Strobilurin (QoI) 類及Benzimidazole 類殺菌劑之抗感性。中興大學植物病理學系碩士論文。台中。49頁。
    連結:
  2. 4. 行政院農業委員會 編。2014。農業統計年報。行政院農業委員會。臺北。64頁。
    連結:
  3. 5. 羅國偉。2012。草莓田間管理技術。桃園區農業技術專輯第9號─草莓專輯。9-13。
    連結:
  4. 6. 鐘珮哲、彭淑貞、張廣淼、楊秀珠及余思葳。 2012。 草莓病蟲害之發生與管理。1-31。
    連結:
  5. 7. Ahmad, R., Kim, Y. H., Kim, M. D., Kwon, S. Y., Cho, K., Lee, H. S., and Kwak, S. S. 2010. Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol. Plant. 138: 520-533.
    連結:
  6. 8. Ajilogba, C. F., and Babalola, O. O. 2013. Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci. 18: 117-127.
    連結:
  7. 9. Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., and Caballero, J. L. 2011. The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol. 52: 1873-1903.
    連結:
  8. 10. Arroyo, F. T., Moreno, J., Daza, P., Boianova, L., and Romero, F. 2007. Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum. J. Agric. Food Chem. 55: 5701-5707.
    連結:
  9. 11. Baker, K. F., and Cook, R. J. 1974. Biological control of plant pathogens. [ed] Freeman, W. H., San Francisco, CA. 433 pp.
    連結:
  10. 12. Beraha, L., and Wright, W. R. 1973. New anthracnose of strawberry caused by Colletotrichum dematium. Plant Dis. 57: 445-448.
    連結:
  11. 14. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S. A. 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92: 7162-7166.
    連結:
  12. 15. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
    連結:
  13. 16. Chalfoun, N. R., Castagnaro, A. P., and Ricci, J. D. 2011. Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biol. Control 58: 319-329.
    連結:
  14. 17. Chen, C., and Dickman, M. B. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA 102: 3459-3464.
    連結:
  15. 18. Chen, X. Y., and Kim, J. Y. 2009. Callose synthesis in higher plants. Plant Signal. Behav. 2: 489-492.
    連結:
  16. 19. Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res. 164: 493-513.
    連結:
  17. 20. Curry, K. J., Abril, M., Avant, J. B., and Smith, B. J. 2002. Strawberry anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. Phytopathology 92: 1055-1063.
    連結:
  18. 22. de Melo Pereira, G. V., Magalhães, K. T., Lorenzetii, E. R., Souza, T. P., and Schwan, R. F. 2012. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb. Ecol. 63: 405-417.
    連結:
  19. 23. Delp, B. R., and Milholland, R. D. 1980. Evaluating strawberry plants for resistance to Colletotrichum fragariae. Plant Dis. 64: 1071-1073.
    連結:
  20. 24. Denoyes-Rothan, B., Guérin, G., Délye, C., Smith, B., Minz, D., Maymon, M., and Freeman, S. 2003. Genetic diversity and pathogenic variability among isolates of Colletotrichum species from strawberry. Phytopathology 93: 219-228.
    連結:
  21. 25. FAOStat. 2013. Food and agriculture organization of the united nations (FAO) Statistical Databases. Retrieved JUN 26, 2015 from the World Wide Web: http://faostat3.fao.org/home/E.
    連結:
  22. 26. Feio, S. S., Barbosa, A., Cabrita, M., Nunes, L., Esteves, A., Roseiro, J. C., and Curto, M. J. M. 2004. Antifungal activity of Bacillus subtilis 355 against wood-surface contaminant fungi. J. Ind. Microbiol. Biotechnol. 31: 199-203.
    連結:
  23. 27. Filippone, M. P., Ricci, J. D., de Marchese, A. M., Farı́as, R. N., and Castagnaro, A. 1999. Isolation and purification of a 316 Da preformed compound from strawberry (Fragaria ananassa) leaves active against plant pathogens. FEBS Lett. 459: 115-118.
    連結:
  24. 28. Freeman, S. 2008. Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. HortScience 43: 66-68.
    連結:
  25. 29. Freeman, S., and Katan, T. 1997. Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology 87: 516-521.
    連結:
  26. 30. Freeman, S., Nizani, Y., Dotan, S., Even, S., and Sando, T. 1997. Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse, and field conditions. Plant Dis. 81: 749-752.
    連結:
  27. 31. Garrido, C., Carbú, M., Fernández-Acero, F. J., Budge, G., Vallejo, I., Colyer, A., and Cantoral, J. M. 2008. Isolation and pathogenicity of Colletotrichum spp. causing anthracnose of strawberry in south west Spain. Eur. J. Plant Pathol. 120: 409-415.
    連結:
  28. 33. Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P., and Díaz-Ricci, J. C. 2012. Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiol. Biochem. 54: 10-16.
    連結:
  29. 34. Guetsky, R., Shtienberg, D., Elad, Y., and Dinoor, A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91: 621-627.
    連結:
  30. 35. Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., and Dinoor, A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92: 976-985.
    連結:
  31. 36. Guidarelli, M., Carbone, F., Mourgues, F., Perrotta, G., Rosati, C., Bertolini, P., and Baraldi, E. 2011. Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Physiol. 60: 685-697.
    連結:
  32. 37. Guidarelli, M., Zoli, L., Orlandini, A., Bertolini, P., and Baraldi, E. 2014. The mannose‐binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Mol. Plant Pathol. 15: 832-840.
    連結:
  33. 38. Gunnell, P. S., and Gubler, W. D. 1992. Taxonomy and morphology of Colletotrichum species pathogenic to strawberry. Mycologia 84: 157-165.
    連結:
  34. 39. Gupton, C. L. 2000. Use of herbicides and plant growth regulators to suppress Italian ryegrass growth. HortTechnology 10: 773-776.
    連結:
  35. 40. Han, J. H., Shim, H., Shin, J. H., and Kim, K. S. 2015. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol. J. 31: 165-175.
    連結:
  36. 41. Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., Liu, Q., Zhao, M., and Tang, C. 2014. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen‐associated molecular pattern‐triggered immunity. Environ. Microbiol. 17: 1166-1188.
    連結:
  37. 42. Henry, G., Deleu, M., Jourdan, E., Thonart, P., and Ongena, M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune‐related defence responses. Cell Microbiol. 13: 1824-1837.
    連結:
  38. 43. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251.
    連結:
  39. 44. Holtsberg, F. W., Steiner, M. R., Keller, J. N., Mark, R. J., Mattson, M. P., and Steiner, S. M. 1998. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons. J. Neurochem. 70: 66-76.
    連結:
  40. 45. Horikoshi, K., and Iida, S. 1958. Lysis of fungal mycelia by bacterial enzymes. Nature 181: 917 - 918.
    連結:
  41. 46. Horikoshi, K., Koffler, H., and Arima, K. 1963. Purification and properties of β-1, 3-glucanase from the “lytic enzyme” of Bacillus circulans. Biochim. Biophys. Acta. 73: 267-275.
    連結:
  42. 47. Howard, C. M. 1972. A strawberry fruit rot caused by Colletotrichum fragariae. Phytopathology 62: 600-602.
    連結:
  43. 48. Howard, C. M., and Albregts, E. E. 1984. Anthracnose of strawberry fruit caused by Glomerella cingulata in Florida. Plant Dis. 68: 824-825.
    連結:
  44. 49. Howard, C. M., Maas, J. L., Chandler, C. L., and Albregts, E. E. 1992. Anthracnose of strawberry caused by the collotrichum complex in Florida. Plant Dis. 76: 976-981.
    連結:
  45. 50. Huang, H., Wu, Z., Tian, C., Liang, Y., You, C., and Chen, L. 2015. Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides. Ann. Microbiol. 65: 1361-1371.
    連結:
  46. 51. Hyde, K. D., Cai, L., McKenzie, E. H. C., Yang, Y. L., Zhang, J. Z., and Prihastuti, H. 2009. Colletotrichum: a catalogue of confusion. Fungal Divers. 39: 1-17.
    連結:
  47. 52. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.
    連結:
  48. 53. Karlidag, H., Yildirim, E., and Turan, M. 2009. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci. Agric. 66: 180-187.
    連結:
  49. 54. Khan, A. A., and Shih, D. S. 2004. Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Sci. 166: 753-762.
    連結:
  50. 55. Kim, Y. S., Song, J. G., Lee, I. K., Yeo, W. H., and Yun, B. S. 2013. Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology 41: 108-111.
    連結:
  51. 57. Linzmeier, R., Ho, C. H., Hoang, B. V., and Ganz, T. 1999. A 450-kb contig of defensin genes on human chromosome. Gene 233.
    連結:
  52. 58. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. 2011. Callose deposition a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24: 183-193.
    連結:
  53. 59. Maas, J. L., and Howard, C. M. 1985. Variation of several anthracnose fungi in virulence to strawberry and apple. Plant Dis. 69: 164-166.
    連結:
  54. 60. MacKenzie, S. J., and Peres, N. A. 2012. Use of leaf wetness and temperature to time fungicide applications to control anthracnose fruit rot of strawberry in Florida. Plant Dis. 96: 522-528.
    連結:
  55. 61. Madeo, F., Fröhlich, E., Ligr, M., Grey, M., Sigrist, S. J., and Wolf, D. H. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 154: 757-767.
    連結:
  56. 62. Mamaní, A., Filippone, M. P., Grellet, C., Welin, B., Castagnaro, A. P., and Ricci, J. C. D. 2012. Pathogen-induced accumulation of an ellagitannin elicits plant defense response. Mol. Plant-Microbe Interact. 25: 1430-1439.
    連結:
  57. 63. Martin, F. N., and Bull, C. T. 2002. Biological approaches for control of root pathogens of strawberry. Phytopathology 92: 1356-1362.
    連結:
  58. 64. Mertely, J., Peres, N. A., and 2014. Control of Colletotrichum acutatum on infected strawberry transplants. Phytopathology 104: 80-80.
    連結:
  59. 65. Milholland, R. D. 1982. Histopathology of strawberry infected with Colletotrichum fragariae. Phytopathology 72: 1434-1439.
    連結:
  60. 66. Mochizuki, M., Yamamoto, S., Aoki, Y., and Suzuki, S. 2012. Isolation and characterisation of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Bio. Sci. Techn. 22: 697-709.
    連結:
  61. 67. Muzaffar, S., Bose, C., Banerji, A., Nair, B. G., and Chattoo, B. B. 2016. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl. Microbiol. Biotechnol. 100: 323-335.
    連結:
  62. 68. Nam, M. H., Park, M. S., Kim, H. G., and Yoo, S. J. 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol Biotechnol. 19: 520-524.
    連結:
  63. 69. Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J., and Zhao, H. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 469: 120-125.
    連結:
  64. 70. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
    連結:
  65. 71. Pérez-García, A., Romero, D., and De Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacillius in agriculture. Curr. Opin. Biotechnol. 22: 187-193.
    連結:
  66. 72. Peres, N. A., Timmer, L. W., Adaskaveg, J. E., and Correll, J. C. 2005. Lifestyles of Colletotrichum acutatum. Plant Dis. 89: 784-796.
    連結:
  67. 73. Phoulivong, S., Cai, L., Chen, H., McKenzie, E. H., Abdelsalam, K., Chukeatirote, E., and Hyde, K. D. 2010. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers. 44: 33-43.
    連結:
  68. 75. Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N., Tonello, U., and Ricci, J. D. 2007. Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur. J. Plant Pathol. 117: 109-122.
    連結:
  69. 76. Shi, Y., Zhang, Y., and Shih, D. S. 2006. Cloning and expression analysis of two β-1, 3-glucanase genes from strawberry. J. Plant Physiol. 163: 956-967.
    連結:
  70. 77. Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89: 515-521.
    連結:
  71. 79. Smith, B. J., and Black, L. L. 1990. Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis. 74: 69-76.
    連結:
  72. 80. Smith, B. J., Wedge, D. E., and Pace, P. F. 2013. A microtiter assay shows effectiveness of fungicides for control of Colletotrichum spp. from strawberry. Int. J. Fruit Sci. 13: 205-216.
    連結:
  73. 81. Spoel, S. H., and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12: 89-100.
    連結:
  74. 82. Sreenivasaprasad, S., Sharada, K., Brown, A. E., and Mills, P. R. 1996. PCR‐based detection of Colletotrichum acutatum on strawberry. Plant Pathol. 45: 650-655.
    連結:
  75. 83. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
    連結:
  76. 84. Sun, G., Zhang, S., Xie, Y., Zhang, Z., and Zhao, W. 2016. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol. Lett. 11: 150-158.
    連結:
  77. 85. Susi, P., Aktuganov, G., Himanen, J., and Korpela, T. 2011. Biological control of wood decay against fungal infection. J. Environ. Manage. 92: 1681-1689.
    連結:
  78. 87. Tortora, M. L., Díaz-Ricci, J. C., and Pedraza, R. O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 193: 275-286.
    連結:
  79. 88. Tortora, M. L., Díaz-Ricci, J. C., and Pedraza, R. O. 2012. Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant Soil 56: 279-290.
    連結:
  80. 90. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
    連結:
  81. 91. Wu, C. C., and Shu, S. T. 2011. Effects of nitrogen fertilization and gibberellic acid on plant growth and runner development in strawberry. J. Taiwan Soc. Hort. Sci. 57: 143-153.
    連結:
  82. 92. Wu, L., Wu, H. J., Qiao, J., Gao, X., and Borriss, R. 2015. Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front. Microbiol. 6: 1-13.
    連結:
  83. 93. Yamamoto, S., Shiraishi, S., and Suzuki, S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13‐3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 60: 379-386.
    連結:
  84. 95. Yuliar, Y. A. N., and Toyota, K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30: 1-11.
    連結:
  85. 96. Zhang, Y., Seeram, N. P., Lee, R., Feng, L., and Heber, D. 2008. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. 56: 670-675.
    連結:
  86. 97. Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12: 414-420.
    連結:
  87. 98. Zuckerman, B. M., Dicklow, M. B., and Acosta, N. 1993. A Strain of Bacillus thuringiensis for the control of plant‐parasitic nematodes. Biocontrol Sci. Technol. 3: 41-46.
    連結:
  88. 1. 李窸明。1993。台灣草莓產業演進40年。313-330。
  89. 2. 徐啟紅、任平國、張勝及侯凱。2008。草莓莖尖培養快繁技術研究。北方園藝。1: 183-185。.
  90. 13. Biswas, M. K., Roy, U. K., Islam, R., and Hossain, M. 2010. Callus culture from leaf blade, nodal, and runner segments of three strawberry (Fragaria sp.) clones. Turk. J. Biol. 34: 75-80.
  91. 21. Daugovish, O., Bolda, M., Kaur, S., Mochizuki, M. J., Marcum, D., and Epstein, L. 2012. Drip irrigation in California strawberry nurseries to reduce the incidence of Colletotrichum acutatum in fruit production. HortScience 47: 368-373.
  92. 32. Greaves, H. 1970. The effect of selected bacteria and actinomycetes on the decay capacity of some wood-rotting fungi. Mater. Org. 5: 265-279.
  93. 56. Klamkowski, K., and Treder, W. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res. 16: 179-188.
  94. 74. Saengnak, V., Jaipin, W., and Nalumpang, S. 2014. Evaluation of Streptomyces sp. culture media extracts for control of strawberry anthracnose disease. J. Agr. Sci. Tech. 10: 105-117.
  95. 78. Smith, B. J. 2008. Epidemiology and pathology of strawberry anthracnose: a North American perspective. HortScience 43: 69-73.
  96. 86. Ton, J., Ent, S., van Hulten, M., Pozo, M., Oosten, V. V., Loon, L. C. V., Mauch-Mani, B., Turlings, T. C. J., and Pieterse, C. M. 2009. Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. International organisation for biological and integrated control 44: 3-13.
  97. 89. Wang, N., Wang, J., Yin, D. H., Gao, G. P., and Wang, W. 2010. Triplex PCR detection of Botrytis cinerea, Colletotrichum gloeosporioides and Verticillium dahliae in infected strawberry plant tissues. Sci. Agric. Sinica. 21: 4392-4400.
  98. 94. Yao, J. A., Yu, D., Chen, F., Huang, P., and Chen, F. 2013. Sequence analysis of ITS and PCR rapid-detection of Colletotrichum gloeosporioides from Cymbidium ensifolium. Acta Phytophylacica Sinica 3: 249-254.