题名

PFLP之磷酸化為強化阿拉伯芥之PTI免疫反應所必需

并列篇名

Phosphorylation of plant ferredoxin-like protein is required for intensifying PAMP-triggered immunity in Arabidopsis thaliana

作者

陳姿誼

关键词

Plant ferredoxin-like protein (PFLP) ; PAMPs-triggered immunity ; casein kinase II ; mitogen-activated protein kinase ; Plant ferredoxin-like protein (PFLP) ; PAMPs-triggered immunity ; casein kinase II ; mitogen-activated protein kinase

期刊名称

屏東科技大學植物醫學系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

林宜賢

内容语文

繁體中文

中文摘要

植物病原菌小分子被植物細胞表面受器辨識後所觸發之免疫反應稱為PAMPs-triggered immunity (PTI)。已有多篇文獻證明PTI之訊號可被外源的plant ferredoxin-like protein (PFLP) 所提升,使多種植物產生抵抗細菌性病害之能力。目前亦已發現PFLP所含有之casein kinase II磷酸化區域為強化植物抗病性所必需,但其磷酸化反應之發生與增強抗病是否相關則仍未知。因此,本研究利用胺基酸點突變方式,將PFLP經單一胺基酸置換所獲得之無法磷酸化的PFLPT90A 與模擬磷酸化的PFLPT90D分別進行分析。結果顯示,無法磷酸化與模擬磷酸化之重組蛋白均無法提升HrpZ蛋白所誘導的過敏性反應及對Pectobacterium carotovorum subsp. carotovorum ECC17的抗病性。由此可推測PFLP蛋白在植物中的實際磷酸化可能為提升抗病所必需。為進一步了解PFLP磷酸化與植物細胞內casein kinase II (CK2) 是否相關,本研究分別利用阿拉伯芥CK2插入突變株cka2及恢復突變株CKA2R於flg22Pst存在下探討PFLP在過敏性反應、激活化氧的快速產生、癒傷葡聚醣的累積及軟腐病菌之罹病度上之影響。結果證明,CK2均為 PFLP 在上述抗病反應及對軟腐病菌之抗病性上所必需。為了解PFLP在強化PTI的過程中是否參與mitogen-activated protein kinase (MAPK) 之相關訊號傳遞路徑,以MAPK路徑上之相關基因FRK1與WRKY22/29之表現進行探討的結果顯示,PFLP可提升flg22Pst誘導之MAPK訊號傳遞路徑且需要CK2之參與。另一方面,本研究亦證明阿拉伯芥於flg22Pst誘導下,PFLP不論在野生型植株或cka2突變株中均能提升水楊酸及茉莉酸之抗病路徑。說明PFLP在此兩條路徑上之提升可能不需要CK2之參與。由此推測PFLP在提升對軟腐病之抗病性上,水楊酸及茉莉酸路徑可能不是主要的途徑。此外,本研究利用酵母菌雙融和系統分析顯示PFLP可與CK2發生蛋白質交互作用,且此交互作用之發生可能與PFLP的C端較為有關。綜合以上之結果可推測,PFLP在提升阿拉伯芥對細菌軟腐病之抗病機制可能主要是藉由提升PAMPs被植物細胞辨識後所啟動的MAPK訊號傳遞路徑,而此防禦路徑之強化需要PFLP在阿拉伯芥中被CK2磷酸化。

英文摘要

Defense responses triggered by pathogen-associated molecular patterns (PAMPs) recognition on plasma membrane is called PAMPs-triggered immunity (PTI). It has been demonstrated that PTI can be intensified by plant ferredoxin-like protein (PFLP) to improve plant disease resistance against bacterial pathogens. The improvement of this disease resistance requires the casein kinase II phosphorylation (CK2P) site of PFLP. However, whether the phosphorylation of CK2P site was required for intensifying disease resistance is still unknown. In this study, un-phosphorylated and mimic phosphorylated recombinant proteins were generated from PFLP. Result revealed that these proteins could not intensify PAMPs-triggered hypersensitive reaction (HR) and disease resistance against bacterial soft rot. It suggested that the actual phosphorylation of PFLP in plant may be necessary to enhance disease resistance. To understand whether PFLP phosphorylated is related to the extracellular casein kinase II (CK2) in Arabidopsis thaliana, the cka2 mutant and its recovery mutant CKA2R was used for further analysis. Results demonstrated that the PFLP-intensified PTI responses and disease resistance were abolished in cka2 mutant and restored in CKA2R mutant. To gain more insight on CK2 is required for PFLP-intensified PTI signaling, expression of marker genes in mitogen-activated protein kinase (MAPK) was assayed. Results exhibited that the CK2 was required for PFLP to enhance expression on flg22Pst-induced FRK1 and WRKY22/29 in MAPK pathway. Moreover, we provided evidences that PFLP was interacted with CK2 at C-terminal by yeast two-hybrid assay. Therefore, we concluded that extracellular casein kinase II was required for PFLP to activate MAPK pathway in PTI for further enhancing disease resistance against bacterial soft rot in Arabidopsis thaliana.

主题分类 農學院 > 植物醫學系所
生物農學 > 植物學
参考文献
  1. 1. 洪銓佑。2015。PFLP提升PAMP-triggered immunity 於抗細菌性軟腐病之研究。國立屏東科技大學植物醫學系碩士學位論文。屏東。64頁。
    連結:
  2. 3. Aslam, S. N., Erbs, G., Morrissey, K. L., Newman, M. A., Chinchilla, D., Boller, T., Molinaro, A., Jackson, R. W., and Cooper, R. M. 2009. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Mol. Plant Pathol. 10: 375-387.
    連結:
  3. 4. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., and Sheen, J. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464: 418-423.
    連結:
  4. 5. Brown, R. L., Kazan, K., McGrath, K. C., Maclean, D. J., and Manners, J. M. 2003. A role for the GCC-box in jasmonate-mediated activation of the PDF1. 2 gene of Arabidopsis. Plant Physiol. 132: 1020-1032.
    連結:
  5. 6. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
    連結:
  6. 7. Campos, M. L., Kang, J. H., and Howe, G. A. 2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40: 657-675.
    連結:
  7. 8. Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57-63.
    連結:
  8. 10. Chen, C. C., Hwang, J. K., and Yang, J. M. 2009. (PS)2-v2: template-based protein structure prediction server. BMC Bioinformatics 10: 366.
    連結:
  9. 11. Chen, Z., Malamy, J., Henning, J., Conrath, U., Sanchez-Casas, P., Silva, H., Ricigliano, J., and Klessig, D. K. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. U S A 92: 4134-4137.
    連結:
  10. 12. Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., Lee, S. Y., and Stacey, G. 2014. Identification of a plant receptor for extracellular ATP. Science 343: 290-294.
    連結:
  11. 13. Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., and Dong, X. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12: 2175-2190.
    連結:
  12. 14. Clough, S. J., and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
    連結:
  13. 16. De Geyter, N., Gholami, A., Goormachtig, S., and Goossens, A. 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 17: 349-359.
    連結:
  14. 17. Degrave, A., Fagard, M., Perino, C., Brisset, M. N., Gaubert, S., Laroche, S., Patrit, O., and Barny, M. A. 2008. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol. Plant-Microb. Interact. 21: 1076-1086.
    連結:
  15. 18. Delaney, T. P., Uknes, S., Vernooij, B., and Friedrich, L. 1994. A central role of salicylic acid in plant disease resistance. Science 266: 1247-1250.
    連結:
  16. 19. Desikan, R., Clarke, A., Atherfold, P., Hancock, J. T., and Neill, S. J. 1999. Harpin induces mitogen-activated protein kinase activity during defence responses in Arabidopsis thaliana suspension cultures. Planta 210: 97-103.
    連結:
  17. 20. Doares, S. H., Syrovets, T., Weiler, E. W., and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. U S A 92: 4095-4098.
    連結:
  18. 21. Dong, H., Delaney, T. P., Bauer, D. W., and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20: 207-215.
    連結:
  19. 22. Duvick, L., Barnes, J., Ebner, B., Agrawal, S., Andresen, M., Lim, J., Giesler, G. J., Zoghbi, H. Y., and Orr, H. T. 2010. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 67: 929-935.
    連結:
  20. 23. Felix, G., Duran, J. D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276.
    連結:
  21. 24. Fukuyama, K. 2004. Structure and function of plant-type ferredoxins. Photosynth. Res. 81: 289-301.
    連結:
  22. 25. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-754.
    連結:
  23. 26. Galán, J. E., and Collmer, A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328.
    連結:
  24. 27. Galletti, R., Ferrari, S., and De Lorenzo, G. 2011. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 157: 804–814.
    連結:
  25. 28. Göhre, V., Jones, A. M. E., Sklenář, J., Robatzek, S., and Weber, A. P. M. 2012. Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol. Plant-Microb. Interact. 25: 1083-1092.
    連結:
  26. 29. Halim, V. A., Altmann, S., Ellinger, D., Eschen‐Lippold, L., Miersch, O., Scheel, D., and Rosahl, S. 2009. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 57: 230-242.
    連結:
  27. 30. Hamdoun, S., Liu, Z., Gill, M., Yao, N., and Lu, H. 2013. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. PLoS One.
    連結:
  28. 31. Hanke, G. T., Kimata-Ariga, Y., Taniguchi, I., and Hase, T. 2004. A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol. 134: 255-264.
    連結:
  29. 33. He, S. Y., Huang, H. C., and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.
    連結:
  30. 34. Hsu, F. C., Chou, M. Y., Chou, S. J., Li, Y. R., Peng, H. P., and Shih, M. C. 2013. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant Cell 25: 2699-2713.
    連結:
  31. 35. Huang, H. E., Ger, M. J., Chen, C. Y., Yip, M. K., Chung, M. C., and Feng, T. Y. 2006. Plant ferredoxin-like protein (PFLP) exhibits an anti-microbial ability against soft-rot pathogen Erwinia carotovora subsp. carotovora in vitro and in vivo. Plant Sci. 171: 17-23.
    連結:
  32. 36. Huang, H. E., Liu, C. A., Lee, M. J., Kuo, C. G., Chen, H. M., Ger, M. J., Tsai, Y. C., Chen, Y. R., Lin, M. K., and Feng, T. Y. 2007. Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. Phytopathol. 97: 900-906.
    連結:
  33. 37. Ishikawa, K., Yamaguchi, K., Sakamoto, K., Yoshimura, S., Inoue, K., Tsuge, S., Kojima, C., and Kawasaki, T. 2014. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nature Communications 5: 5430.
    連結:
  34. 38. Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.
    連結:
  35. 39. Kandoth, P. K., Ranf, S., Pancholi, S. S., Jayanty, S., Walla, M. D., Miller, W., Howe, G. A., Lincoln, D. E., and Stratmann, J. W. 2007. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc. Natl. Acad. Sci. U S A 104: 12205-12210.
    連結:
  36. 40. Katsir, L., Chung, H. S., Koo, A. J., and Howe, G. A. 2008. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11: 428-435.
    連結:
  37. 41. Krick, R., Aschrafi, A., Hasgün, D., and Arnemann, J. 2006. CK2-dependent C-terminal phosphorylation at T300 directs the nuclear transport of TSPY protein. Biochem. Biophys. Res. Commun. 341: 343-350.
    連結:
  38. 42. Liau, C. H., Lu, J. C., Prasad, V., Hsiao, H. H., You, S. J., Lee, J. T., Yang, N. S., Huang, H. E., Feng, T. Y., Chen, W. H., and Chan, M. T. 2003. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res. 12: 329-336.
    連結:
  39. 43. Lin, Y. H., Huang, H. E., Chen, Y. R., Liao, P. L., Chen, C. L., and Feng, T. Y. 2011. C-terminal region of plant ferredoxin-like protein is required to enhance resistance to bacterial disease in Arabidopsis thaliana. Phytopathol. 101: 741-749.
    連結:
  40. 44. Lin, Y. H., Huang, H. E., Wu, F. S., Ger, M. J., Liao, P. L., Chen, Y. R., Tzeng, K. C., and Feng, T. Y. 2010. Plant ferredoxin-like protein (PFLP) outside chloroplast in Arabidopsis enhances disease resistance against bacterial pathogens. Plant Sci. 179: 450-458.
    連結:
  41. 45. Lin, Y. H., Huang, L. F., Hase, T., Huang, H. E., and Feng, T. Y. 2015. Expression of plant ferredoxin-like protein (PFLP) enhances tolerance to heat stress in Arabidopsis thaliana. N. Biotechnol. 32: 235-242.
    連結:
  42. 46. Litchfield, D. W. 2003. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochemical J. 369: 1-15.
    連結:
  43. 47. Macho, A. P., and Zipfel, C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23: 14-22.
    連結:
  44. 48. Monaghan, J., and Zipfel, C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15: 349-357.
    連結:
  45. 49. Mott, G. A., Middleton, M. A., Desveaux, D., and Guttman, D. S. 2014. Peptides and small molecules of the plant-pathogen apoplastic arena. Front. Plant Sci. 5: 677.
    連結:
  46. 50. Mulekar, J. J., Bu, Q., Chen, F., and Huq, E. 2012. Casein kinase II alpha subunits affect multiple developmental and stress-responsive pathways in Arabidopsis. Plant J. 69: 343-354.
    連結:
  47. 51. Nair, A., Kolet, S. P., Thulasiram, H. V., and Bhargava, S. 2015. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol. 17: 625-631.
    連結:
  48. 52. Namukwaya, B., Tripathi, L., Tripathi, J. N., Arinaitwe, G., Mukasa, S. B., and Tushemereirwe, W. K. 2012. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res. 21: 855-865.
    連結:
  49. 53. Nicaise, V., Roux, M., and Zipfel, C. 2009. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150: 1638-1647.
    連結:
  50. 54. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316.
    連結:
  51. 55. Pieterse, C. M., and van Loon, L. C. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4: 52-58.
    連結:
  52. 56. Postel, S., and Kemmerling, B. 2009. Plant systems for recognition of pathogen-associated molecular patterns. Semin. Cell Dev. Biol. 20: 1025-1031.
    連結:
  53. 57. Po‐Wen, C., Singh, P., and Zimmerli, L. 2012. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14: 58-70.
    連結:
  54. 58. Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H. Y., Johnson, J., Delaney, T. P., Jesse, T., Vos, P., and Uknes, S. 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9: 425-439.
    連結:
  55. 59. Schmittgen, T. D., and Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101-1108.
    連結:
  56. 60. Segonzac, C., and Zipfel, C. 2011. Activation of plant pattern-recognition receptors by bacteria. Curr. Opin. Plant Biol. 14: 54-61.
    連結:
  57. 61. Shah, J., Tsui, F., and Klessig, D. F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant-Microb. Interact. 10: 69-78.
    連結:
  58. 62. Sreekanta, S., Bethke, G., Hatsugai, N., Tsuda, K., Thao, A., Wang, L., Katagiri, F., and Glazebrook, J. 2015. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana. New Phytol. 207: 78-90.
    連結:
  59. 63. Staswick, P. E., Yuen, G. Y., and Lehman, C. C. 1998. Jasmonate signaling mutants of Arabidopsisare susceptible to the soil fungus Pythium irregulare. Plant J. 15: 747-754.
    連結:
  60. 64. Stone, J. M., and Walker, J. C. 1995. Plant protein kinase families and signal transduction. Plant Physiol. 108: 451-457.
    連結:
  61. 65. Studier, F. W., and Moffatt, B. A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113–130.
    連結:
  62. 66. Su, Y. H., Hong, C. Y., and Lin, Y. H. 2014. Plant ferredoxin-like protein enhances resistance to bacterial soft rot disease through PAMP-triggered immunity in Arabidopsis thaliana. Eur. J. Plant Pathol. 140: 377-384.
    連結:
  63. 67. Tanaka, K., Choi, J., Cao, Y., and Stacey, G. 2014. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5: 446.
    連結:
  64. 68. Tang, K., Sun, X., Hu, Q., Wu, A., Lin, C. H., Lin, H. J., Twyman, R. M., Christou, P., and Feng, T. 2001. Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci. 160: 1035-1042.
    連結:
  65. 69. Tognetti, V. B., Palatnik, J. F., Fillat, M. F., Melzer, M., Hajirezaei, M. R., Valle, E. M., and Carrillo, N. 2006. Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18: 2035-2050.
    連結:
  66. 70. Vijayan, P., Shockey, J., Lévesque, C. A., and Cook, R. J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. U S A 95: 7209-7214.
    連結:
  67. 71. Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565.
    連結:
  68. 72. Wu, S. J., Liu, Y. S., and Wu, J. Y. 2008. The signaling role of extracellular ATP and its dependence on Ca2+ flux in elicitation of Salvia miltiorrhiza hairy root cultures. Plant Cell Physiol. 49: 617-624.
    連結:
  69. 73. Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., and Araki, T. 2005. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46: 1175-1189.
    連結:
  70. 74. Yi, S. Y., and Kwon, S. Y. 2014. How does SA signaling link the Flg22 responses? Plant Signal Behav. 9: e972806.
    連結:
  71. 75. Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G., and Kwon, S. Y. 2014. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One. 9: e88951.
    連結:
  72. 76. Zarate, S. I., Kempema, L. A., and Walling, L. L. 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 143: 866-875.
    連結:
  73. 2. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983.
  74. 9. Chang, X., Seo, M., Takebayashi, Y., Kamiya, Y., Riemann, M., and Nick, P. 2016. Jasmonates are induced by the PAMP flg22 but not the cell
  75. death-inducing elicitor Harpin in Vitis rupestris. Protoplasma 1-13.
  76. 15. Dayakar, B. V., Lin, H. J., Chen, C. H., Ger, M. J., Lee, B. H., Pai, C. H., Chow, D., Huang, H. E., Hwang, S. Y., Chung, M. C., and Feng, T. Y. 2003. Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpinpss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol. Biol. 51: 913-924.
  77. 32. Harrison, S. J., Mott, E. K., Parsley, K., Aspinall, S., Gray, J. C., and Cottage, A. 2006. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2: 19.