题名

調節式防砂壩之囚砂效率探討

并列篇名

Study on the Sediment Trapping Efficiency of Adjustable Check Dam

作者

邱士恩

关键词

防砂壩 ; 囚砂 ; 攔阻泥沙 ; 鋼管 ; Check Dam ; Sediment Trapping ; Arresting Sediment ; Steel Pipe

期刊名称

屏東科技大學水土保持系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

許中立

内容语文

繁體中文

中文摘要

本研究利用二維數值模式CCHE-2D模擬知本溪上游處加入壩體後之水理、輸砂模擬及人工渠道試驗,於渠道模擬中放置封閉式防砂壩、梳子壩、鋼管壩及梳子結合鋼管之壩體,經重現期距50、100年之含砂流量模擬後,探討各防砂壩的囚砂效果,並利用鋼管可拆除的特性,拆除後壩體的土砂流出情形,以瞭解「調節式防砂壩」之功效,探討調節後的河床變化。 二維數值模擬結果顯示,加入封閉式防砂壩,土砂被攔蓄於壩體的上游,因此壩體上游的河床糙度及水位會因此升高;梳子壩為開口式壩體,無法攔阻大粒徑之礫石,但建築壩體後影響了河床之坡度,下游因為有隘口造成束縮,大粒徑之礫石會在此停留,造成河床糙度增加,土砂也在此悽置。 人工渠道試驗結果顯示,封閉式防砂壩的囚砂率為最高,由於封閉式防砂壩為非透過性壩,會將所有土砂所攔阻於壩體的上游處,因此其囚砂率較高。梳子壩加鋼管壩之壩體之囚砂率較無封閉式防砂壩佳,但囚砂率優於其他開口式壩,梳子壩加鋼管與鋼管壩相比,確實囚砂率有上升,主要原因是因為梳子壩有封閉式結構,能夠攔阻土砂之面積較多,因此囚砂率較高。

英文摘要

The research utilizes 2D numerical model CCHE-2D to simulate hydrology, sand transporting and artificial channel test of upstream added with dam body in Zhiben River Upstream,and study performed channel tests to simulate closed CDs, SDs, steel pipe dams (SPDs), and steel pipe plus slit dam (SPSDs) 50-year 100-year floods. Results were then analyzed to determine the sediment trapping (ST) effects of various CDs, the effects of “adjustable CDs,” and the changes of moderated riverbeds. The 2D numerical simulation structure shows that soil and sand are retained in upstream of the check dam after sand prevention dam is added, therefore, roughness and water level in upstream of the check dam will rise. Slit-type sabo dam is an open check dam, which cannot block gravel of big grain size, but the slope of riverbed is influenced by the check dam, and the downstream shrinks due to sally port where gravel of big grain size stops, causing increase of roughness of riverbed and retention of soil and sand. Test result of artificial channel shows that trap efficiency of a sealed sand prevention dam is high. The sealed sand prevention dam is a non-pervious dam capable of blocking all soil and sand in upstream, thus its trap efficiency is high. Trap efficiency of the check dam of slit-type sabo dam and steel-pile dam is higher than that of sealed sand prevention dam, but superior to that of other opening check dams. Compared with steel-pipe dam, the trap efficiency of slit-type sabo dam steel pipes is higher mainly because the slit-type sabo dam has sealed structure, which can block more soil and sand.

主题分类 工學院 > 水土保持系所
生物農學 > 生物環境與多樣性
参考文献
  1. 1.王圍穩,2009,壩體移除對河床變化之試驗研究與鋼管壩之鋼構安定分析,碩士論文,國立中興大學,水土保持學系,台中。
    連結:
  2. 3.行政院農業委員會水土保持局,2006,水土保持手冊,行政院農委會水土保持局。
    連結:
  3. 4.行政院農業委員會水土保持局,2012,水土保持技術規範,行政院農委會水土保持局。
    連結:
  4. 5.李岱玲,2011,CCHE2D模式應用於蜿蜒複式河槽變遷之研究,碩士論文,國立交通大學,土木工程學系,新竹。
    連結:
  5. 6.林欣怡,2008,防砂壩移除對河床變遷影響之研究─以巴陵壩為例,碩士論文,國立台灣大學,土木工程學系,臺北。
    連結:
  6. 9.陳樹群、安軒霈,2006,透水攔淤防砂壩對細顆粒泥砂之囚砂特性研究,行政院農委會水土保持局。
    連結:
  7. 11.陳世鎮,2011,頭前溪河口沖淤問題分析及對策研究,碩士論文,國立中興大學,水土保持學系,台中。
    連結:
  8. 15.趙益群,2006,孔隙型防砂壩對細顆粒泥砂囚砂效果之研究,碩士論文,國立中興大學,水土保持學系,臺中。
    連結:
  9. 19.Armanini, A. and M. Larcher,2001, “Rational criterion for designing opening of slit-check dam.” J. Hydraul. Eng.,Vol.127, No.2, pp.94-104.
    連結:
  10. 20.Brown, J. H., 1984, “On the relationship between abundance and distribution of Species,” The American Naturalist,Vol.124, pp.255-279.
    連結:
  11. 22.Bui Minh Duc, Wenka T.,and Rodi W. 2004, “Numerical modeling of bed deformation in laboratory channels.” J. Hydr. Engrg., ASCE,Vol.130, No.9. pp.894- 904.
    連結:
  12. 23.Cantelli, A., Wong, M., Parker, G., and Paola, C., 2007, “Numerical model linking bed and bank evolution of incisional channel created by dam removal,” Water Resour. Res., 43: W07436.
    連結:
  13. 24.Doyle, M. W., Stanley, E. H., Harbor, J. M.,2003,”Channel Adjustments Following Two Dam Removals in Wisconsin,” WaterResources Research, 39:1011.
    連結:
  14. 26.Jennifer G.Duan, S.S.Y. Wang and Yafei Jia,2001,” The Applications of the Enhanced CCHE2D Model to Study the Alluvial Channel Migration Processes”, Journal of Hydraulic Research,Vol 39, Issue5, pp.469-480.
    連結:
  15. 28.Jia, Y., Wang, S.Y.Y., and Xu, Y.,2002, "Validation and application of a 2D model to channels with complex geometry", International Journal of Computational Engineering Science,Vol.3, No.1, pp.57-71.
    連結:
  16. 29.Kondolf, G. M.,1997, “Hungry water: effects of dams and gravel mining on river channels.” Environmental management,Vol.21, No.4, pp.533-551.
    連結:
  17. 31.Nagata, N., Hosoda, T., and Muramoto, Y.,2000, “Numerical analysis of river channel processes with bank erosion.” J. Hydr. Engrg., ASCE,Vol.126, No.4, pp.243–252.
    連結:
  18. 34.Proffit, G.T. and Sutherland., A.J. 1983. ”Transport of nonuniform sediment.” J. of Hydraulic Research,Vol.21, No.1, pp.33-43.
    連結:
  19. 36.Wu, W., Rodi, W., and Wenka, T.,2000, “3D Numerical modeling of flow and sediment transport in open channels.” J. Hydraul. Eng., Vol.126, No.1, pp.4–15.
    連結:
  20. 37.Wu, W., Wang, S.S.Y., and Jia, Y.,2000, “Nonuniform sediment transport in alluvial rivers.” J. Hydr. Res., IAHR,Vol.38, No.6, pp.427-434.
    連結:
  21. 2.王傳益,葉昭憲,鄭人豪,段紀湘,呂其倫,2010,防砂壩壩體移除之模型試驗-以七家灣溪一號壩為例,水土保持學報第42卷,第4期,第423-437頁。
  22. 7.段錦浩、連惠邦、葉昭憲,2008,七家灣溪一號防砂壩壩體改善之試驗研究,內政部營建署雪霸國家公園管理處。
  23. 8.許少華,林仁奎,洪碧芳,2014,「以CCHE-2D模擬筏子溪之交互砂洲演變過程」,臺灣水利季刊,第62卷,第3期,第75-84頁。
  24. 10.陳樹群、吳俊鋐,2010,集水區土砂量變化對河川物理棲地復育之影響研究,石門水庫及其集水區整治計畫研究成果研討會。
  25. 12.張明雄、林曜松,1999,防砂壩對溪流水生物多樣性的影響,生物多樣性論文集。
  26. 13.葉克家,2009,美國國家計算水科學及工程中心河道變遷模式之引進及應用研究,第十三屆海峽兩岸水利科技交流研討會。
  27. 14.潘建中、黃宏斌,1995,連續防砂壩之水理特性研究,農業工程學報,第41卷,第3期,第38-46頁。
  28. 16.錢寧、萬兆惠,1991,泥砂運動力學,科學出版社。
  29. 17.盧錫彥,2011,利用動床水理模式進行河道防災管理-以大甲溪為例,土木與生態工程研討會。
  30. 18.闕帝旺,2013,野溪淤積土砂清疏之數值模擬-以來社溪為例,碩士論文,逢甲大學,水利工程與資源保育學系,臺中。
  31. 21.Borah, D. K., and Bordoloi, P. K. 1989, “Stream bank erosion and bed evolution model.” Sediment Transport Modeling, S. Wnag, ed., ASCE, New York, N. Y., pp612-619.
  32. 25.Gilbert, G. K., 1914, “The Transportation of Debris by RunningWater,” U. S. Geol. Survey, Prof. 86: 259.
  33. 27.Jia, Y., Wang, S.,2001, “CCHE2D verification and validation tests documentation.” National Center for Computational Hydroscience and Engineering. Technical Report No. NCCHE-TR-2001-2, August.
  34. 30.Lane, E. W.,1955, “The importance of fluvial morphology in hydraulic engineering.” Proc., ASCE,Vol.745, No.81, pp.1-17.
  35. 32.Nakano, H., Kasai, S., Moriyama, H., and Mizuno, M.,2003, “Safer and more economical steel sabo dam designs.” Kobe Steel Engineering Reposts,Vol.53, No.1, pp.86-90.
  36. 33.Ono, G. I., Mizuyama, T., and Matsumura, K.,2004, “Current practices in the design and evaluation of steel sabo facilities in Japan.” Internationales Symposion INTERPRAEVENT 2004 – RIVA/TRIENT, pp.253-264.
  37. 35.Toffaleti, F.B.,1968, “A procedure for computation of the total river sand discharge and detailed distribution, bed to surface.”” Technical Report No.5, US Army Corps of Engineers, Vicksburg, Miss.
  38. 38.Wu, W.M.,2001, “CCHE2D sediment transport model”, Technical Report No. NCCHE-TR-2001-3, National Center for Computational Hydroscience and Engineering, The University of Mississippi.