题名

利用固態發酵生產不同芽孢桿菌菌株

并列篇名

Solid-state fermentation of various Bacillus species

作者

康智雄

关键词

地衣芽孢桿菌 ; 枯草芽孢桿菌 ; 納豆芽孢桿菌 ; 固態發酵 ; Bacillus licheniformis ; Bacillus subtilis ; Bacillus subtilis var. natto ; Solid state fermentation

期刊名称

屏東科技大學食品科學國際碩士學位學程學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

郭嘉信

内容语文

英文

中文摘要

現今畜牧業大量使用抗生素來增加牲畜的飼料產肉效力及降低飼養成本,抗生素的濫用已經造成環境與水的污染,濫用抗生素會造成環境中細菌或病毒產生抗藥性,這對人類的醫療與健康是一個大威脅,如何尋找其他替代的方法以降低抗生素的使用,已經成為畜牧業必須面對的課題。益生菌的餵食是已知可以替代抗生素的方法,其中又以芽孢桿菌屬(Bacillus)最受矚目。本實驗之目的在探討Bacillus licheniformis、B. subtilis、B. subtilis var. natto 以不同的農業副產物配合適當微生物培養基進行固態發酵,從實驗室研發規模,進而擴大化生產含高濃度芽孢桿菌孢子的動物飼料。本實驗結果發現:B. licheniformis、B. subtilis、B. subtilis var. natto 以稻殼與大豆粉2:1的比例最適合芽孢桿菌生長,原料殺菌3小時可以殺死雜菌的耐熱性孢子,微生物培養基中葡萄糖與其他原料需分開殺菌,可以避免產生梅納反應,以免抑制芽孢桿菌生長,改良的固態發酵可在培養3天後使菌數高達10的10次方CFU/g。

英文摘要

Nowadays, antibiotics are widely used in livestock for increasing feed conversion efficacy and reducing costs. However, abuses of antibiotics have caused water and environment pollutions, as well as development of drug resistant pathogens, which become a major threat of human health. Researching alternative methods to reduce the use of antibiotics has become an important task or challenge in animal husbandry. Using probiotics to replace antibiotics in feeds is one of fensible strategies. People have drawn a great attention to the use of Bacillus spp. in animal feed. The present study investigated solid-state fermentation of Bacillus licheniformis, B. subtilis and B. subtilis var. natto using different agricultural by-products as fermentation substrates to make high cell density products as animal feed supplements. The investigation was initially studied on a lab scale and later was scaled up to a pilot production. The experimental results showed that rice husk to soybean meal on 2:1 ratio is suitable for use as medium formulation for cultivation of B. licheniformis, B. subtilis and B. subtilis var. natto. Sterilization time of 3 hours was required to kill all the heat resistant spores in the fermentation substrates. Additionally, glucose has to be sterilized separately from other ingredients in order to avoid Mallard reaction, which was found to inhibit the growth of Bacilli in this study. The optimized medium formulation and solid state fermentation process can produce fermentation products containing bacteria spores up to 10 to the power of 10 CFU/g after 3 days fermentation, which is satisfactory for the commercial production purpose.

主题分类 國際學院 > 食品科學國際碩士學位學程
工程學 > 化學工業
参考文献
  1. Adams, T. T., M. A. Eiteman, & B. M. Hanel. (2002). Solid state fermentation of broiler litter for production of biocontrol agents. Bioresource technology, 82(1), 33-41.
    連結:
  2. Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, S. Kritas, A. Siochu, & S. Kyriakis. (2004). Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. Journal of Animal Physiology and Animal Nutrition, 88(11‐12), 381-392.
    連結:
  3. Balasubramanian, B., T. Li, & I. H. Kim. (2016). Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade qualitytraits. Revista Brasileira de Zootecnia, 45(3), 93-100.
    連結:
  4. Boukhris, I., A. Farhat-Khemakhem, M. Blibech, K. Bouchaala, & H. Chouayekh. (2015). Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. International journal of biological macromolecules, 80, 581-587.
    連結:
  5. Cavazzoni, V., A. Adami, & C. Castrovilli. (1998). Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British poultry science, 39(4), 526-529.
    連結:
  6. Collinder, E., G. N. Berge, M. E. Cardona, E. Norin, S. Stern, & T. Midtvedt. (2000). Feed additives to piglets, probiotics or antibiotics. Paper presented at the Proceedings of the 16th International Pig Veterinary Society Congress.
    連結:
  7. Cutting, S. M. (2011). Bacillus probiotics. Food Microbiology, 28(2), 214-220.
    連結:
  8. Dahiya, J. P., D. C. Wilkie, A. G. Van Kessel, & M. D. Drew. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Animal Feed Science and Technology, 129(1), 60-88.
    連結:
  9. Davis, G. S., & K. E. Anderson. (2002). The effects of feeding the direct-fed microbial, primalac, on growth parameters and egg production in single comb white leghorn hens. Poultry science, 81(6), 755-759.
    連結:
  10. Davis, M. E., T. Parrott, D. C. Brown, B. Z. De Rodas, Z. B. Johnson, C. V. Maxwell, & T. Rehberger. (2008). Effect of a-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. Journal of animal science, 86(6), 1459-1467.
    連結:
  11. Duc, L. H., H. A. Hong, & S. M. Cutting. (2003a). Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine, 21(27), 4215-4224.
    連結:
  12. Duc, L. H., H. A. Hong, N. Q. Uyen, & S. M. Cutting. (2004b). Intracellular fate and immunogenicity of B. subtilis spores. Vaccine, 22(15), 1873-1885.
    連結:
  13. El‐Bendary, M. A. (2006). Bacillus thuringiensis and Bacillus sphaericus biopesticides production. Journal of basic microbiology, 46(2), 158-170.
    連結:
  14. F, C. O., C. G.R., & B. A. (2004). Bacteriocin‐like substance production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38(4), 251-256.
    連結:
  15. Fuller, R. (1989). A review. J. appl. Bacteriol, 66, 365-378.
    連結:
  16. Gaggìa, F., P. Mattarelli, & B. Biavati. (2010). Probiotics and prebiotics in animal feeding for safe food production. International journal of food microbiology, 141, S15-S28.
    連結:
  17. Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture, 180(1), 147-165.
    連結:
  18. Glenn, G. R., & M. B. Roberfroid. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. nutr, 125, 1401-1412.
    連結:
  19. Guarner, F., & G. J. Schaafsma. (1998). Probiotics. International journal of food microbiology, 39(3), 237-238.
    連結:
  20. Gulati, H. K., B. S. Chadha, & H. S. Saini. (2007). Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. Journal of industrial microbiology & biotechnology, 34(1), 91-98.
    連結:
  21. Haddadin, M. S. Y., S. M. Abdulrahim, E. A. R. Hashlamoun, & R. K. Robinson. (1996). The effect of Lactobacillus acidophilus on the production and chemical composition of hen's eggs. Poultry science, 75(4), 491-494.
    連結:
  22. Han, B., W.-Q. Long, J.-Y. He, Y.-J. Liu, Y.-Q. Si, & L.-X. Tian. (2015). Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish & shellfish immunology, 46(2), 225-231.
    連結:
  23. Hong, H. A., & S. M. Cutting. (2005). The use of bacterial spore formers as probiotics. FEMS microbiology reviews, 29(4), 813-835.
    連結:
  24. Hooge, D. M. (2003). Bacillus spores may enhance broiler performance. Feedstuffs, 20, 28-32.
    連結:
  25. Hooge, D. M., H. Ishimaru, & M. D. Sims. (2004). Influence of dietary Bacillus subtilis C-3102 spores on live performance of broiler chickens in four controlled pen trials. The Journal of Applied Poultry Research, 13(2), 222-228.
    連結:
  26. Hosoi, T., A. Ametani, K. Kiuchi, & S. Kaminogawa. (1999). Changes in fecal microflora induced by intubation of mice with Bacillus subtilis (natto) spores are dependent upon dietary components. Canadian journal of microbiology, 45(1), 59-66.
    連結:
  27. Hsu, H.-L. (2005). Study on the optimization of culture conditions and characterization of natto kinase producing from Bacillus subtilis var. natto NPUST B11-2. (master), National Pingtung University of Science and Technology, Pintung, Taiwan.
    連結:
  28. Hyronimus, B., C. Le Marrec, & M. C. Urdaci. (1998). Coagulin, a bacteriocin-like-inhibitory substance produced by Bacillus coagulans I. Journal of Applied Microbiology, 85(1), 42-50.
    連結:
  29. Jadamus, A., W. Vahjen, K. Schäfer, & O. Simon. (2002). Influence of the probiotic strain Bacillus cereus var. toyoi on the development of enterobacterial growth and on selected parameters of bacterial metabolism in digesta samples of piglets. Journal of animal physiology and animal nutrition, 86(1‐2), 42-54.
    連結:
  30. Jadamus, A., W. Vahjen, & O. Simon. (2001). Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Archives of Animal Nutrition, 54(1), 1-17.
    連結:
  31. Jin, L.-Z., Y.-W. Ho, N. Abdullah, & S. Jalaludin. (1996). Influence of dried Bacillus subtilis and lactobacilli cultures on intestinal microflora and performance in broilers. Asian Australasian Journal of Animal Sciences, 9, 397-404.
    連結:
  32. Kumar, V., G. Singh, P. Sangwan, A. K. Verma, & S. Agrawal. (2014). Cloning, Sequencing, and In Silico Analysis of-Propeller Phytase Bacillus licheniformis Strain PB-13. Biotechnology research international, 2014.
    連結:
  33. Kyriakis, S. C., V. K. Tsiloyiannis, J. Vlemmas, K. Sarris, A. C. Tsinas, C. Alexopoulos, & L. Jansegers. (1999). The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Research in veterinary science, 67(3), 223-228.
    連結:
  34. La Ragione, R. M., G. Casula, S. M. Cutting, & M. J. Woodward. (2001). Bacillus subtilis spores competitively exclude Escherichia coli O78: K80 in poultry. Veterinary microbiology, 79(2), 133-142.
    連結:
  35. La Ragione, R. M., & M. J. Woodward. (2003). Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary microbiology, 94(3), 245-256.
    連結:
  36. Lee, K. H., K. D. Jun, W. S. Kim, & H. D. Paik. (2001). Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 32(3), 146-151.
    連結:
  37. Lee, S. H., S. L. Ingale, J. S. Kim, K. H. Kim, A. Lokhande, E. K. Kim, I. K. Kwon, Y. H. Kim, & B. J. Chae. (2014). Effects of dietary supplementation with Bacillus subtilis LS 1–2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Animal Feed Science and Technology, 188, 102-110.
    連結:
  38. Li, X., Z. Wu, W. Li, R. Yan, L. Li, J. Li, Y. Li, & M. Li. (2007). Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Applied Microbiology and Biotechnology, 74(5), 1120-1125.
    連結:
  39. Lin, P.-Y. (2006). Effect of Bacillus subtilis mutant treatment on their production of nattokinase. (Master), National Pingtung University of Science and Technology, Pintung, Taiwan.
    連結:
  40. Liu, T.-Y., B.-C. Su, J.-L. Wang, C. Zhang, & A.-S. Shan. (2013). Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs. Journal of Northeast Agricultural University (English Edition), 20(4), 57-63.
    連結:
  41. Malik, R., & S. Bandla. (2010). Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (Bubalus bubalis) calves. Tropical animal health and production, 42(6), 1263-1269.
    連結:
  42. Meng, Q. W., L. Yan, X. Ao, T. X. Zhou, J. P. Wang, J. H. Lee, & I. H. Kim. (2010). Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. Journal of animal science, 88(10), 3320-3326.
    連結:
  43. Miles, R. D., A. S. Arafa, R. H. Harms, C. W. Carlson, B. L. Reid, & J. S. Crawford. (1981). Effects of a living nonfreeze-dried Lactobacillus acidophilus culture on performance, egg quality, and gut microflora in commercial layers. Poultry Science, 60(5), 993-1004.
    連結:
  44. Muscettola, M., G. Grasso, Z. Blach-Olszewska, P. Migliaccio, C. BorghesiNicoletti, M. Giarratana, & V. Gallo. (1992). Effects of Bacillus subtilis spores on interferon production. Pharmacological Research, 26, 176-177.
    連結:
  45. Nagai, S., K. Okimura, N. Kaizawa, K. Ohki, & S. Kanatomo. (1996). Study on surfactin, a cyclic depsipeptide. II. Synthesis of surfactin B2 produced by Bacillus natto KMD 2311. Chemical and pharmaceutical bulletin, 44(1), 5-10.
    連結:
  46. Nakano, M. M., & P. Zuber. (1998). Anaerobic growth of a “strict aerobe”(Bacillus subtilis). Annual Reviews in Microbiology, 52(1), 165-190.
    連結:
  47. Ozawa, K., K. Yabu‐Uchi, K. Yamanaka, Y. Yamashita, K. Ueba, & T. Miwatani. (1979). Antagonistic effects of Bacillus natto and Streptococcus faecalis on growth of Candida albicans. Microbiology and immunology, 23(12), 1147-1156.
    連結:
  48. Patterson, J. A., & K. M. Burkholder. (2003). Application of prebiotics and probiotics in poultry production. Poultry science, 82(4), 627-631.
    連結:
  49. Pinchuk, I. V., P. Bressollier, B. Verneuil, B. Fenet, I. B. Sorokulova, F. Mégraud, & M. C. Urdaci. (2001). In Vitro Anti-Helicobacter pyloriActivity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antibiotics. Antimicrobial agents and chemotherapy, 45(11), 3156-3161.
    連結:
  50. Prokešová, L., M. Novakova, J. Julák, & M. Mára. (1994). Effect ofBacillus firmus and other sporulating aerobic microorganisms onin vitro stimulation of human lymphocytes. A comparative study. Folia microbiologica, 39(6), 501-504.
    連結:
  51. Reynolds, J. (2012). Serial dilution protocols. American Society for Microbiology.
    連結:
  52. Rhee, K.-J., P. Sethupathi, A. Driks, D. K. Lanning, & K. L. Knight. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. The Journal of Immunology, 172(2), 1118-1124.
    連結:
  53. Ribeiro, V., L. F. T. Albino, H. S. Rostagno, S. L. T. Barreto, M. I. Hannas, D. Harrington, F. A. De Araujo, H. C. Ferreira, & M. A. Ferreira. (2014). Effects of the dietary supplementation of Bacillus subtilis levels on performance, egg quality and excreta moisture of layers. Animal Feed Science and Technology, 195, 142-146.
    連結:
  54. Samanya, M., & K.-E. Yamauchi. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(1), 95-104.
    連結:
  55. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology, 56(4), 845-857.
    連結:
  56. Sun, P., J.-Q. Wang, & H.-T. Zhang. (2011). Effects of supplementation of Bacillus subtilis natto Na and N1 strains on rumen development in dairy calves. Animal feed science and technology, 164(3), 154-160.
    連結:
  57. Sun, P., J. Q. Wang, & H. T. Zhang. (2010). Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Journal of dairy science, 93(12), 5851-5855.
    連結:
  58. Taras, D., W. Vahjen, M. Macha, & O. Simon. (2005). Response of performance characteristics and fecal consistency to long-lasting dietary supplementation with the probiotic strain Bacillus cereus var. toyoi to sows and piglets. Archives of animal nutrition, 59(6), 405-417.
    連結:
  59. Teo, A. Y. L., & H. M. Tan. (2006). Effect of Bacillus subtilis PB6 (CloSTAT) on broilers infected with a pathogenic strain of Escherichia coli. The Journal of Applied Poultry Research, 15(2), 229-235.
    連結:
  60. Timmermans, L. P. M. (1987). Early development and differentiation in fish. Sarsia, 72(3-4), 331-339.
    連結:
  61. Toymentseva, A. A., A. D. Suleimanova, E. A. Boulygina, S. V. Kazakov, D. S. Baranova, A. I. Akhmetova, A. M. Mardanova, & M. R. Sharipova. (2015). Draft genome sequence of Bacillus ginsengihumi strain M2. 11 with phytase activity. Genome announcements, 3(4), e00851-00815.
    連結:
  62. Tsai, C.-C., H.-Y. Hsih, H.-H. Chiu, Y.-Y. Lai, J.-H. Liu, B. Yu, & H.-Y. Tsen. (2005). Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. International journal of food microbiology, 102(2), 185-194.
    連結:
  63. Uni, Z., Y. Noy, & D. Sklan. (1999). Posthatch development of small intestinal function in the poult. Poultry Science, 78(2), 215-222.
    連結:
  64. Wang, Y., J. H. Cho, Y. J. Chen, J. S. Yoo, Y.Huang, H. J. Kim, & I. H. Kim. (2009). The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livestock science, 120(1), 35-42.
    連結:
  65. Whitley, N. C., D. Cazac, B. J. Rude, D. Jackson-O’Brien, & S. Parveen. (2009). Use of a commercial probiotic supplement in meat goats. Journal of animal science, 87(2), 723-728.
    連結:
  66. Yu, P., & Y. Chen. (2013). Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC biotechnology, 13(1), 1.
    連結:
  67. Zhao, S., N. Hu, J. Huang, Y. Liang, & B. Zhao. (2008). High-yield spore production from Bacillus licheniformis by solid state fermentation. Biotechnology letters, 30(2), 295-297.
    連結:
  68. Zhou, X., E. Jin, S. Li, C. Wang, E. Qiao, & G. Wu. (2015). Effects of dietary supplementation of probiotics (Bacillus subtilis, Bacillus licheniformis, and Bacillus natto) on broiler muscle development and meat quality. Turkish Journal of Veterinary and Animal Sciences, 39(2), 203-210.
    連結:
  69. Anjum, M. I., A. G. Khan, A. Azim, & M. Afzal. (2005). Effect of dietary supplementation of multi-strain probiotic on broiler growth performance. Pak. Vet. J, 25(1), 25-29.
  70. Barbosa, T. M., C. R. Serra, R. M. La Ragione, M. J. Woodward, & A. O. Henriques. (2005). Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and environmental microbiology, 71(2), 968-978.
  71. Breed, R. S., & W. D. Dotterrer. (1916). The number of colonies allowable on satisfactory agar plates. Journal of Bacteriology, 1(3), 321.
  72. Cartman, S. T., R. M. La Ragione, E. Ricca, A. O. Henriques, & S. M. Cutting. (2004). Spore probiotics as animal feed supplements. Bacterial spore formers: probiotics and emerging applications, 155-161.
  73. Chen, J.-P. (1997). Concepts and Applications (1). Taipei, Taiwan: McGraw-Hill Education.
  74. Duc, L. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, & S. M. Cutting. (2004a). Characterization of Bacillus probiotics available for human use. Applied and environmental microbiology, 70(4), 2161-2171.
  75. Duc, L. H., H. A. Hong, N. Fairweather, E. Ricca, & S. M. Cutting. (2003b). Bacterial spores as vaccine vehicles. Infection and immunity, 71(5), 2810-2818.
  76. Goldman, E., & L. H. Green. (2008). Practical handbook of microbiology, Second Edition: CRC Press.
  77. Hisanga, S. (1980). Studies on the germination of genus Bacillus spores in rabbit and canine intestines. J. Nagoya City Med. Assoc, 30, 456-469.
  78. Hoa, T. T., R. Isticato, L. Baccigalupi, E. Ricca, P. H. Van, & S. M. Cutting. (2001). Fate and dissemination of Bacillus subtilis spores in a murine model. Applied and environmental microbiology, 67(9), 3819-3823.
  79. Lawrence, C., & C. Nauciel. (1998). Production of interleukin-12 by murine macrophages in response to bacterial peptidoglycan. Infection and immunity, 66(10), 4947-4949.
  80. Lin, Z.-X., & S.-K. Jiang. (1996). The importance of gut microbes on animal nutrition. Taiwan Institute of Animal Science, 38, 243.
  81. Liu, Y.-T. (2000). New Microbiology. Taipei, Taiwan: Yong-da Press.
  82. Muscettola, M., G. Grasso, P. Migliaccio, & V. C. Gallo. (1991). Plasma interferon-like activity in rabbits after oral administration of Bacillus subtilis spores. J. Chemother, 3(Suppl 3), 130-132.
  83. Najjaa, H., S. Fattouch, & M. Neffati. (2011). Science against microbial pathogens: communicating current research and technological advances.
  84. SCAN. (1999). Opinion of of the Scientific Steering Committee on antimicrobial resistance. from http://europa.eu.int/comm/food/fs/sc/ssc/out50_en.pdf
  85. SCAN. (2000). Report of the Scientific Committee on Animal Nutrition on product BioPlus 2Bfor use as feed additive. from http://europa.eu.int/comm/food/fs/sc/scan/out49_en.pdf
  86. Simon, O., W. Vahjen, & L. Scharek. (2005). Micro-organisms as feed additives-probiotics. Advances in pork Production, 16, 161-167.
  87. Spinosa, M. R., T. Braccini, E. Ricca, M. De Felice, L. Morelli, G. Pozzi, & M. R. Oggioni. (2000). On the fate of ingested Bacillus spores. Research in Microbiology, 151(5), 361-368.
  88. Steiner, T. (2006). Managing gut health: natural growth promoters as a key to animal performance: Nottingham university press.
  89. Urdaci, M. C., P. Bressollier, & I. Pinchuk. (2004a). Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. Journal of clinical gastroenterology, 38, S86-S90.
  90. Urdaci, M. C., I. Pinchuk, E. Ricca, A. O. Henriques, & S. M. Cutting. (2004b). Antimicrobial activity of Bacillus probiotics. Bacterial spore formers: probiotics and emerging applications, 171-182.
  91. USP, C. (2015). 61>“Microbiological Examination of Nonsterile Products: Microbial Enumeration Tests,”. United States Pharmacopeia, 32, 71-75.
  92. Wang, S.-L. (2002). Applied Microbiology. Taipei, Taiwan: Gao-li Press.
  93. Zhong, Y.-C., J. fang, Y.-X. Xu, Q.-Z. Chen, J.-G. Lin, C.-F. Lin, & J.-L. Chao. (2002). Microbiology an introduction. Taipei, Taiwan: Wei-ming Press.