题名

應用地面光達技術於臺灣杉人工林之疏伐監測

并列篇名

Using Terrestrial Laser Scanning System to Monitor Thinning Effects for Taiwania cryptomerioides Hayata Plantations

DOI

10.6346/NPUST201900183

作者

詹于萱

关键词

Weibull機率密度函數 ; 疏伐作業 ; 林分結構 ; 地面光達 ; Weibull probability density function ; thinning ; stand structure ; Terrestrial Laser Scanning System (TLS)

期刊名称

屏東科技大學森林系所學位論文

卷期/出版年月

2019年

学位类别

碩士

导师

陳建璋;魏浚紘

内容语文

繁體中文

中文摘要

疏伐(Thinning)為人工林經營過程中重要的撫育作業之一,進行疏伐作業可營造健康的立木生長空間,進而產生林分結構(Stand Structure)的變化,對於人工林立木生長具有正面影響。如何準確性的量化疏伐作業對林分結構變化之影響,為疏伐作業對立木生長效益評估之重要議題。地面雷射掃瞄系統(Terrestrial Laser Scanning System, TLS)因其具有高精度、高密度及高機動性等特性,且可獲取物體的三維形貌,近年來被大量應用於森林資源調查。本研究應用TLS技術,以荖濃溪事業區之臺灣杉(Taiwania cryptomerioides Hayata)人工林為試驗材料,透過Weibull機率密度函數模擬林分結構探討林分生長狀態,再配合競爭指數探討如何調整林分直徑分布結構,以促進林木生長。本研究於臺灣杉40年生人工林設置15個樣區,研究結果顯示,經由K-S適合度檢定,Weibull機率密度函數可有效描述樣區之直徑分布。目前林分結構呈現正偏歪分布的樣區,林分內小徑木數量偏多,林木競爭情形嚴重,為增加林木的持續生長,在經營上須進行疏伐作業,以營造立木的最大生長效益。本研究利用11個樣區38個疏伐率進行疏伐模擬,應用三參數推導疏伐率與相關尺度關係式:p=99.4203-1.6253R,計算各直徑階疏伐株數配合競爭指數模擬疏伐木之選取,經模擬疏伐後計算留存木之平均最適株距為3.34±0.06 m,可作為荖濃溪事業區下層疏伐作業,各直徑階疏伐株數估算及單木留存株距之依據,研究結果亦可供經營管理者配置疏伐木及立木空間距離,以及訓練疏伐人員如何選取下層疏伐之疏伐木之參考。

英文摘要

Thinning is an important tending operation in the plantations management, especially has positive impacts for the tree growth. The stand structure which has been subjected to thinning operations will be changed the stand structure and to create a healthy growth space. However, how to do accuracy assessment in the effect of thinning is an important issue in forest management. In recent years, the Terrestrial Laser Scanning System (TLS) has been widely used in forest resource surveys to collect forest characteristics, due to its high precision, high density and high mobility. In this study, we used TLS to analyze the growth of Taiwania cryptomerioides Hayata plantations in Launonshi working circle. Using Weibull probability density function to simulate the stand structure, growth and how to adjust the diameter distribution of the stand to promote the growth of the forest were discussed. The results were checked the goodness of fit by K-S test, and show that the Weibull probability density function can effectively describe the diameter distribution of the 15 experimental plots, which were set up in the 40-year-old plantation of Taiwania cryptomerioides Hayata. The diameter distribution of plots is positively skewed due to the number of small-diameter woods in these plots is a great amount, and the trees have a competition each other, thinning operations must be carried out and to promote the tree growth benefits for this stand. This study used 38 thinning rates in 11 plots for thinning simulation, the relationship between the thinning rate and the relevant scale was deduced by three parameters: p=99.4203-1.6253R, and the average optimum plant spacing of the retained wood after simulated thinning was 3.34±0.06 m. The result can be used as a reference for the estimation of the number of thinning plants of each diameter class, and the distance between the single wood and the remaining plant in the thinning area of the Launonshi working circle of Taiwan Forestry Bureau. The results of the study are also available for managers to allocate the distance between the felling wood and the standing timber, and to train the thinning personnel to select the thinning wood for the thinning from below.

主题分类 農學院 > 森林系所
生物農學 > 森林
参考文献
  1. 李隆恩、顏添明 (2010) 紅檜人工林疏伐後4年對林分及單木層級之影響。中華林學季刊 43(2): 249-260。
    連結:
  2. 魏浚紘、吳守從、彭炳勳、陳朝圳 (2010) 應用空載光達建立阿里山地區柳杉人工林之林分材積式。地理學報 59: 67-80。
    連結:
  3. 王子定、孔繁熙、龔正敏 (1969) 臺灣杉球花枝發育及構造之研究。台大實驗林研究報告69號。20頁。
  4. 王亞男、蔡明哲、劉起福、鄭景鵬 (2009) 不同林分密度臺灣杉人工林下層疏伐對其生長之影響。臺大實驗林研究報告 23(4): 295-307。
  5. 余蘭君 (2001) 南仁山次生林林分結構之空間變異。國立屏東科技大學森林系碩士論文。90頁。
  6. 李久先、陳朝圳 (1990) Weibull機率密度函數應用於人工林疏伐作業之研究。中華林學季刊 23(2): 9-15。
  7. 李久先、陳朝圳 (1991) 濁水溪集水區天然林林分結構與樹種組成之研究。臺灣省立博物館年刊 34: 11-32。
  8. 李久先、顏添明 (1996) Weibull機率密度函數之參數和影響林分結構因子關係之探討─以大雪山地區紅檜人工林疏伐林分為例。中興大學實驗林研究彙刊 18(1): 45-56。
  9. 李久先、顏添明、鍾昇興、江菊美、羅義嵩 (1997) 紅檜人工林林分密度管理之研究─疏伐林分之基礎分析。中興大學實驗林顏就彙刊 19(1): 101-111。
  10. 李隆恩 (2016) 競爭作用對林木生長與枯死影響之探討─以臺灣中部地區紅檜人工林為例。國立中興大學森林學系博士學位論文。91頁。
  11. 李隆恩、顏添明 (2012) 以競爭指數配合搜尋半徑預測單木胸徑及胸高斷面積生長之研究─以紅檜人工林為例。中華林學季刊 45(3): 351-364。
  12. 李際平、封堯、趙春燕、張彩彩、曹小玉 (2015) 基於Voronoi圖的角尺度分析方法探討─以湖南省平江縣福壽林場為例。林業資源管理 4: 33-38。
  13. 汪大雄 (2007) 疏伐作業對人工林組成、生長、結構和林地維環境之影響。林業研究專訊 14(1): 8-9。
  14. 汪大雄、王兆桓、高毓斌、吳楊浚 (2004) 多納地區臺灣杉與臺灣赤楊人工混淆林生長競爭之研究。臺灣林業科學 19(4): 337-351。
  15. 林世宗、林振榮、林謙佑、林進龍、巫智斌、鍾智昕 (2013) 行列疏伐對柳杉保留帶之樹輪生長影響。中華林學季刊 46(3): 293-310。
  16. 林建忠 (1999) 雷射測距技術與研究現況。光電產業與技術情報 19: 30-33。
  17. 林務局 (1994) 林務局各林區國有林直營造林林地清查結果報告。台北市。林務局。
  18. 林務局 (2010) 育林實務手冊。國家圖書館出版品。249頁。
  19. 林務局 (2016) 第四次森林資源調查報告。行政院農業委員會林務局。80頁。
  20. 邱志明、唐盛林、孫銘源、彭炳勳 (2018) 臺灣杉人工林不同疏伐策略碳吸存效應。中華林學季刊 51(1): 21-36。
  21. 姚榮鼐 (1993) 臺灣杉人工林生長與林分密度關係之研究。臺大實驗林研究報告 7(4): 1-12。
  22. 袁孝維 (2001) 南投縣沙里仙自然教育中心預定地鳥類對棲地之利用。臺大實驗林研究報告 15(4): 237-247。
  23. 袁孝維 (2002) 溪頭鳳凰山森林生態系經營鳥類相監測。中華林學季刊 35(2): 201-211。
  24. 張凱鈞 (2016) 不同栽植密度對柳杉人工林林份直徑分布之影響。國立中興大學森林學系碩士學位論文。84頁。
  25. 張鈞媛 (2008) 疏伐作業對大葉桃花心木林分結構變化與更新之影響。國立中興大學森林學系碩士學位論文。84頁。
  26. 陳永寬、詹進發、葉堃生、鄭祈全、施瑩瑄 (2005) 應用地面掃射儀測算樹高之研究。航測及遙測學刊 10(4): 327-336。
  27. 陳朝圳 (1985) 大雪山地區紅檜人工幼齡林生長模式之研究。國立中興大學森林研究所碩士論文。125頁。
  28. 陳朝圳、吳守從、陳永寬 (1996) Weibull機率密度函數應用於天然林林分結構動態變化之研究。臺大實驗林研究報告 10(4): 21-31。
  29. 陳朝圳、陳建璋 (2015) 森林經營學。正中書局股份有限公司。417頁。
  30. 陳麗琴、黃進睦、張添榮、洪富文 (1996) 栽植密度對六龜地區臺灣杉生長之影響。臺灣林業科學 11(1): 1-11。
  31. 黃凱洛 (2003) 杉木人工林生長量與碳吸存之研究。國立中興大學森林系碩士班碩士論文。68頁。
  32. 楊啟見、林俊全、鄭遠昌 (2015) 應用地面光達於風化泥岩層沖蝕觀察之研究。中華水土保持學報 46(3): 150-157。
  33. 楊濟豪、曹孟真、詹尚書、李亮瑩、王泰典、許宗傑、柯承宏、陳怡頻 (2014) 地面光達應用於露頭不連續面調查與岩體工程特性評估探討。中華水土保持學報 45(1): 1-18。
  34. 劉興旺、鍾立展、王亞男、陳和田、鄭景鵬 (2009) 臺灣中部地區臺灣杉人工林之生長量與碳吸存量之研究。臺大實驗林研究報告 23: 201-212。
  35. 魏浚紘 (2014) 應用光達技術於人工林之經營與監測。國立屏東科技大學生物資源研究所博士學位論文。208頁。
  36. 魏浚紘、陳建璋、陳建文、陳朝圳 (2011) 應用地面光達強度值進行六龜地區紅檜人工林之樹葉、枝條與幹材之分類。華岡農科學報 28: 19-30。
  37. 魏浚紘、陳朝圳 (2016) 光達技術應用於人工林之經營與監測。航測及遙測學刊 20(4): 231-250。
  38. 魏浚紘、陳朝圳、彭炳勳、李崇誠、陳建璋 (2013) 地面光達應用於林木競爭之研究。航測與遙測學刊 16(4): 279-287。
  39. 羅弘霖 (2017) 臺灣杉人工林之林木生長與林分密度之探討。國立屏東科技大學森林系碩士論文。58頁。
  40. 羅卓振南、鍾旭和、邱志明、周朝富、羅新興 (1991) 疏伐與修枝對臺灣杉人工林生長之影響。林業試驗所研究報告季刊 6(2): 155-168。
  41. 羅時凡、魏浚紘、李崇誠、陳朝圳 (2009) 遙測技術應用於溪頭地區柳杉人工林之森林健康調查。林業研究季刊 31(1): 37-54。
  42. 蘇柏羽、郭家和、陳朝圳、陳建璋 (2015) 臺灣中部大雪山紅檜人工林於不同強度下林木健康及林下植群之探討。中華林學季刊 48(2): 137-154。
  43. Bailey, R. L. (1974) Computer program for quantifying diameter distributions with the Weibull function. Forest Science 10:350-360.
  44. Bailey, R. L., and T. R. Dell (1973) Quantifying diameter distributions with the Weibull function. Forest Science 19:97-104.
  45. Bella, I. E. (1971) A new competition model for individual trees. Forest Science 17: 364-372.
  46. Biging, G. S., and M. Dobbertin (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer tree. Forest Science 38(3): 695-720.
  47. Boehler, W., G. Heinz, and A. Marbs (2001) The potential of non-contact close range laser scanners for cultural heritage recording. Proceedings of CIPA International Symposium, Potsdam, Germany.
  48. Chiu, C. M., G. Night, C. T. Chien and C. C. Ying (2010) Growth patterns of plantation growth Taiwania cryptomerioides following thinning. Australian Forestry Volume 73(4): 246-253.
  49. Clutter, J. L., J. C. Fortson, L. V. Pienaar, G. H. Brister and R. L. Bailey (1983) Timber Management a Quantitative Approach. John Wiley & Sons. pp63-105.
  50. Daniels. R. F. (1976) Simple competition indices and their correlation with annual loblolly pine tree growth. Forest Science 22(4): 454-456.
  51. Dobbertin, M., and G. S. Biging (1998) Using the non-parametric classifier CART to model forest tree mortality. Forest Science 44(4): 507-516.
  52. Dobbertin, M., and P. Brang (2001) Crown defoliation improves tree mortality models. Forest Ecology and Management 141(3): 271-284.
  53. Emmingham, W. H. and N. E. Elwood (2010) Thinning an important timber management tool. A Pacific Northwest Extension Publication Oregon State University, Washington State University, University of Idaho PNW184.
  54. Eriksson, E. (2006) Thinning operations and their impact on biomass production instands of Norway spruce and Scots pine. Biomass and Bioenergy 30: 848-854.
  55. Fabbri, S., B. M. S. Giambastiani, F. Sistilli, F. Scarelli, and G. Gabbianelli (2017) Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 295: 436-451.
  56. Filipescu, C. N., and P. G. Comeau (2007) Competitive interactions between aspen and white spruce vary with stand age in boreal mixedwoods. Forest Ecology and Management 247: 175-184.
  57. García-Gutiérrez., J., F. Martínez-Álvarez, A. Troncoso, and J. C. Riquelmea (2015) A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing 167: 24-31.
  58. Gerrard, D. J. (1969) Competition quotient: A new measure of the competition affecting individual forest trees. University of Minnesota, Agricultural Experiment Station. Research bulletin, No. 20.
  59. Hegyi, F. (1974) Asimulation model for managing jack-pine stand. In: Fries J. (Ed.). Growth models for tree and stand simulation. Royel College of Forestry. Stockholm. Sweden: 74-90.
  60. Henning, J. G., and P. J. Radtke (2008) Multiview range-image registration for forested scenes using explicitly-matched tie points estimated from natural surfaces. ISPRS Journal of Photogrammetry and Remote Sensing 63(1): 68-83.
  61. Hopkinson, C., L. Chasmer, C. Young-Pow, and P. Treitz (2004) Assessing forest metrics with a ground-based scanning lidar. Canadian Journal of Forest Research 34: 573-583.
  62. Hu, H., T. M. Fernandez-Steeger, M. Dong, and R. Azzam (2012) Numerical modeling of LiDAR-based geological model for landslide analysis. Automation in Construction 24: 184-193.
  63. Kakiara, M., and K. Kinashi (1984) Distribution of diameters in Japanese artificial forest. IUFRO symposium on Forest Management Planning, Tokyo Japan 376-383.
  64. Keightley, K. E., and G. W. Bewden (2010) 3D volumetric modeling of grapevine biomass using tripod LiDAR. Computers and Electronics in Agriculture 74: 305-312.
  65. Kerr, G., and J. Haufe (2011) Thinning Practice a Silvicultural Guide. Forestry Commission Version 1.0 50pp.
  66. Lorimer, C. G. (1983) Tests of age-independent competition indices for individual trees in natural hardwood stands. Forest Ecology and Management 6(4): 343-360.
  67. Lovell, J. L., D. L. B. Jupp, G. J. Newnham, and D. S. Culvenor (2011) Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS Journal of Photogrammetry and Remote Sensing 66: 46-55.
  68. Ma, L., G. Zheng, J. U. H. Eitel, T. S. Magney, and L. M. Moskal (2016) Determining woody-to-total area ratio using terrestrial laser scanning (TLS). Agricultural and Forest Meteorology 228-229: 217-228.
  69. Makinen, H., and A. Isomaki (2004) Thinning intensity and long-term changes in increment and stem form of Scots pine trees. Forest Ecology and Management 203(1-3): 21-34.
  70. Maltamo, M., K. Eerikäinen, J. Pitkänen, J. Hyyppä, and M. Vehmas (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment 90: 319-330.
  71. Martin, G. L., and A. R. Ek (1984) A comparison of competition measures and growth models for predicting red pine diameter and height growth. Forest Science 30(3): 731-743.
  72. Metz, J., D. Seidel, P. Scheffer, E-D. Schulze, and C. Ammer (2013) Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. Forest Ecology and Management 310: 275-288.
  73. Mosca, E., L. Montecchio, L. Sella, and J. Garbaye (2007) Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). Forest Ecology and Management 244(1-3): 129-140.
  74. Munro, D. D. (1974) Forest growth models-a prognosis. In: Fries, J. (Ed.), Growth models for tree and stand simulation. Royal College of Forestry, Stockholm, Sweden: 7-21.
  75. Oheimb, G. V., A. C. Lang, H. Bruelheide, D. I. Forrester, I. Wäsche, M. Yu, and W. Härdtle (2011) Individual-tree radial growth in a subtropical broad-leaved forest: The role of local neighbourhood competition. Forest Ecology and Management 261: 499-507.
  76. Omari, K., D. A. MacLean, M. B. Lavigne, J. A. Kershaw Jr., and G. W. Adams (2016) Effect of local stand structure on leaf area, growth, and srowth efficiency following thinning of white spruce. Forest Ecology and Management 368: 55-62.
  77. Omasa, K., Y. Urano, H. Oguma, and Y. Fujinuma (2002) Mapping of tree position of Larix leptolepis woods and estimation of diameter at breast height (DBH) and biomass of the trees using range data measured by a portable scanning lidar. Journal of Remote Sensing Society of Japan 22: 550-557.
  78. Picchio, R., F. Neri, M. Maesano, S. Savelli, A. Sirna, S. Blasi, S. Baldini, and E. Marchi (2011) Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. Forest Ecology and Management 262(2): 237-243.
  79. Porté, A., and H. H. Bartelink (2002) Modelling mixed forest growth: a review of models for forest management. Ecological Modelling 150: 141-188.
  80. Seidel, D., S. Fleck, and C. Leuschner (2012) Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography. Agricultural and Forest Meteorology 154-155: 1-8.
  81. Stovall, A. E. L., A. G. Vorster, R. S. Anderson, P. H. Evangelista, and H. H. Shugart (2017) Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sensing of Environment 200: 31-42.
  82. Suter, G. W. (1993) Ecological risk assessment. Lewis Publishers, Boca Raton, Florida. 538 pp.
  83. Urano, Y., and K. Omasa (2003) Accurate estimation of forest stand parameters in Japanese cedar woods using a portable scanning lidar. In: Proceedings of IAWPS2003. Daejeon, Korea, 403-407.
  84. Wang, D. H., S. G. Tang, and C. M. Chiu (2006) Impact four years after thinning on the growth and stand structure of Taiwania Plantation in the Liukuei experimental forest. Taiwan Journal of Forest Science 21(3): 339-351.
  85. Watt, P. J., and D. N. M. Donoghue (2005) Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing 26: 1437-1446.
  86. Wei, C. H., C. T. Chen, J. C. Chen, and S. T. Wu (2014) Using Ground-based LiDAR Data to Measure Standing Trees in a Red Cypress Plantation. Taiwan Journal of Forest Science 29(3): 169-178.
  87. Willis, J. L., S. D. Roberts, and C. A. Harrington (2018) Variable density thinning promotes variable structural responses 14 years after treatment in the Pacific Northwest. Forest Ecology and Management 410: 114-125.
  88. Zarnoch, S. J., and T. R. Dell (1985) An evaluation of percentile and maximum likelihood estimators of Weibull parameter. Forest Science 31:260-268.
  89. Zhao, K., J. C. Suarez, M. Garica, T. Hu, C. Wang, and A. Londo (2018) Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sensing of Environment 204: 889-897.
  90. Zhu, J. J., T. Matsuzaki, F. Q. Lee., and Y. Gonda (2003) Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. Forest Ecology and Management 182(1-3): 339-354.