题名

以價值理論與滿意度探討Pokémon GO的付費遊玩意圖

并列篇名

To investigate purchase intention for play by PERVAL and Satisfaction – Pokémon GO

作者

李清輝

关键词

Pokémon GO ; 行動定位服務 ; 沉浸體驗 ; 感知價值 ; 滿意度 ; 付費意圖 ; Pokémon GO ; Location-Based Service ; Flow theory ; PERVAL ; Satisfaction ; purchase intention

期刊名称

臺中科技大學資訊管理系碩士班學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

蕭國倫

内容语文

繁體中文

中文摘要

近年來世界的智慧型手機普及率已經提高,使得人們逐漸將以個人電腦為主的娛樂活動轉移到行動裝置上,並正式超越個人電腦,而在目前的行動遊戲之中,最受矚目的就是Pokémon GO。Pokémon GO靠著Pokémon系列遊戲以往累積的知名度迅速累積玩家,且甫推出便受到極大歡迎,但是目前正持續退燒,在2016年9月時曾經付費的玩家甚至只有25%,因此如何提高付費意圖成為急需探討的問題,故本研究主要採用顧客感知價值(Customer Perceived Value, PERVAL)與滿意度結合之模型以探討Pokémon GO的付費意圖,並以感知回應、感知傳播、感知準確、沉浸體驗、美學、社交自我形象表達、連結性、物有所值與獎賞等作為感知價值與滿意度的前置因素,並且判別在性別、收入、平台、每天玩Pokémon GO的時間與玩行動遊戲經驗對於付費意圖的影響程度。本研究針對Pokémon GO的玩家採用線上問卷式調查,問項採用先前之研究稍加修改,使用SPSS與PLS進行分析,另外採用t檢定分析,並且將付費與非付費玩家分別探討。本研究以662份様本進行檢驗。結果顯示針對非付費玩家而言,感知回應、感知傳播、感知準確與連結性不顯著影響感知價值,沉浸體驗、美學、社交自我形象表達、物有所值與獎賞正面影響感知價值;獎賞正面影響物有所值;感知傳播、感知準確、沉浸體驗、社交自我形象表達、連結性與物有所值不顯著影響滿意度,感知回應、美學、獎賞與感知價值正面影響滿意度;感知價值與滿意度正面影響Pokémon GO的付費意圖;性別、收入、平台、每天玩Pokémon GO的時間與玩行動遊戲經驗不顯著影響Pokémon GO的付費意圖。至於針對付費玩家而言,感知回應、感知傳播、感知準確與獎賞不顯著影響感知價值,沉浸體驗、美學、社交自我形象表達、連結性與物有所值正面影響感知價值;獎賞正面影響物有所值;感知回應、感知傳播、感知準確、沉浸體驗、連結性與物有所值不顯著影響滿意度,美學、社交自我形象表達、獎賞與感知價值正面影響滿意度;感知價值、滿意度與每天玩Pokémon GO的時間正面影響Pokémon GO的付費意圖,性別、收入、平台與玩行動遊戲經驗不顯著影響Pokémon GO的付費意圖,因此本研究目的是為將付費意圖以更精細的方式進行分解,以作為其他學術研究的基石。

英文摘要

The purpose of this paper is to develop a research model based on the satisfaction literature and studies of value theory to identify the antecedents of purchase intention in a mobile game Pokémon GO. The proposed model was empirically evaluated using a web survey of 662 Pokémon GO players: 408 nonpaying players and 254 paying players. Partial Least Squares(PLS) was used to assess the research model. The results reveal that satisfaction to the mobile game has significant influence on a player’s intention to make purchase in Pokémon GO. The antecedents of perceived values (flow experience, aesthetics, social self-image expression, connectedness, good price and reward) have direct influence on the perceived value of players. In addition, perceived responsiveness, aesthetics, social self-image expression, connectedness, reward and perceived value have direct influence on the satisfaction of players. Perceived value and satisfaction were found to have a direct impact on a player’s intention to make Pokémon GO purchase. Specifically, our study revealed differences between paying users and nonpaying users. This study provides a better understanding of how the values influence satisfaction among all players of Pokémon GO, and the purchase intentions of paying and nonpaying players. The purpose of the study is to be the cornerstone of other academic research.

主题分类 資訊與流通學院 > 資訊管理系碩士班
社會科學 > 管理學
参考文献
  1. Alnawas, I., & Aburub, F. (2016). The effect of benefits generated from interacting with branded mobile apps on consumer satisfaction and purchase intentions. Journal of Retailing and Consumer Services, 31, 313–322. https://doi.org/10.1016/j.jretconser.2016.04.004
    連結:
  2. Aloudat, A., Michael, K., Chen, X., & Al-Debei, M. M. (2014). Social acceptance of location-based mobile government services for emergency management. Telematics and Informatics, 31(1), 153–171. https://doi.org/10.1016/j.tele.2013.02.002
    連結:
  3. Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351–370. https://doi.org/10.2307/3250921
    連結:
  4. Boulding, W., Kalra, A., Staelin, R., & Zeithaml, V. A. (1993). A Dynamic Process Model of Service Quality : From Expectations to Behavioral Intentions. Journal of Marketing Research, 30(1), 7–27. https://doi.org/10.2307/3172510
    連結:
  5. Calvo-Porral, C., Faíña-Medín, A., & Nieto-Mengotti, M. (2017). Exploring technology satisfaction: An approach through the flow experience. Computers in Human Behavior, 66, 400–408. https://doi.org/10.1016/j.chb.2016.10.008
    連結:
  6. Cardozo, R. N. (1965). An Experimental Study of Customer Effort, Expectation, and Satisfaction. Journal of Marketing Research, 2(3), 244–249. https://doi.org/10.2307/3150182
    連結:
  7. Casey, T. W., & Poropat, A. (2014). Beauty is more than screen deep: Improving the web survey respondent experience through socially-present and aesthetically-pleasing user interfaces. Computers in Human Behavior, 30, 153–163. https://doi.org/10.1016/j.chb.2013.08.001
    連結:
  8. Chang, C. (2013). Examining users’ intention to continue using social network games: A flow experience perspective. Telematics and Informatics, 30, 311–321. Retrieved from http://doi.org/10.1016/j.tele.2012.10.006
    連結:
  9. Cheung, C. M. K., Shen, X.-L., Lee, Z. W. Y., & Chan, T. K. H. (2015). Promoting sales of online games through customer engagement. Electronic Commerce Research and Applications, 14(4), 241–250. https://doi.org/10.1016/j.elerap.2015.03.001
    連結:
  10. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/ Adoption Study. Information Systems Research, 14(2), 189–217. https://doi.org/10.1287/isre.14.2.189.16018
    連結:
  11. Choi, J., & Kim, S. (2016). Is the smartwatch an IT product or a fashion product ? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777–786. https://doi.org/10.1016/j.chb.2016.06.007
    連結:
  12. Chu, C.-W., & Lu, H.-P. (2007). Factors influencing online music purchase intention in Taiwan: An empirical study based on the value-intention framework. Internet Research, 17(2), 139–155. https://doi.org/10.1108/10662240710737004
    連結:
  13. Coursaris, C. K., & VanOsch, W. (2016). A Cognitive-Affective Model of Perceived User Satisfaction (CAMPUS): The complementary effects and interdependence of usability and aesthetics in IS design. Information & Management, 53(2), 252–264. https://doi.org/10.1016/j.im.2015.10.003
    連結:
  14. Csikszentmihalyi, M. (1993). The Evolving Self: A Psychology for the Third Millennium. New York: HarperCollins.
    連結:
  15. Csikszentmihalyi, M. (1997). Finding Flow: The Psychology of Engagement with Everyday Life. MasterMinds. https://doi.org/10.5860/CHOICE.35-1828
    連結:
  16. Dong, T. P., Cheng, N. C., & Wu, Y. C. J. (2014). A study of the social networking website service in digital content industries: The Facebook case in Taiwan. Computers in Human Behavior, 30, 708–714. https://doi.org/10.1016/j.chb.2013.07.037
    連結:
  17. Fang, J., George, B., Shao, Y., & Wen, C. (2016). Affective and cognitive factors influencing repeat buying in e-commerce. Electronic Commerce Research and Applications, 19, 44–55. https://doi.org/10.1016/j.elerap.2016.08.001
    連結:
  18. Fornell, C., & Larcker, D. F. (1981). Evaluation Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
    連結:
  19. Gao, L., Waechter, K. A., & Bai, X. (2015). Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study - A case of China. Computers in Human Behavior, 53, 249–262. https://doi.org/10.1016/j.chb.2015.07.014
    連結:
  20. Guo, Z., Xiao, L., VanToorn, C., Lai, Y., & Seo, C. (2016). Promoting online learners’ continuance intention: An integrated flow framework. Information & Management, 53(2), 279–295. https://doi.org/10.1016/j.im.2015.10.010
    連結:
  21. Hartmann, T., & Klimmt, C. (2006). Gender and Computer Games : Exploring Females ’ Dislikes. Journal of Computer-Mediated Communication, 11, 910–931. https://doi.org/10.1111/j.1083-6101.2006.00301.x
    連結:
  22. Homburg, C., Koschate, N., & Hoyer, W. D. (2005). Do Satisfied Customers Really Pay More? A Study of the Relationship Between Customer Satisfaction and Willingness to Pay. Journal of Marketing, 69(2), 84–96. https://doi.org/10.1509/jmkg.69.2.84.60760
    連結:
  23. Hsiao, K.-L. (2013). Why internet users are willing to pay for social networking services. Online Information Review, 35(5), 770–788. https://doi.org/10.1108/14684521111176499
    連結:
  24. Hsiao, K.-L., & Chen, C. C. (2016). What drives in-app purchase intention for mobile games? An examination of perceived values and loyalty. Electronic Commerce Research and Applications, 16, 18–29. https://doi.org/10.1016/j.elerap.2016.01.001
    連結:
  25. Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853–868. https://doi.org/10.1016/j.im.2003.08.014
    連結:
  26. Huang, H.-C., Huang, L.-S., Chou, Y.-J., & Teng, C.-I. (2017). Influence of Temperament and Character on Online Gamer Loyalty: Perspectives from Personality and Flow Theories. Computers in Human Behavior, 70, 398–406. https://doi.org/10.1016/j.chb.2017.01.009
    連結:
  27. Ivanov, A., & Cyr, D. (2014). Satisfaction with outcome and process from web-based meetings for idea generation and selection: The roles of instrumentality, enjoyment, and interface design. Telematics and Informatics, 31(4), 543–558. https://doi.org/10.1016/j.tele.2013.12.004
    連結:
  28. Kim, H. W., Gupta, S., & Koh, J. (2011). Investigating the intention to purchase digital items in social networking communities: A customer value perspective. Information & Management, 48(6), 228–234. https://doi.org/10.1016/j.im.2011.05.004
    連結:
  29. Kim, K., Schmierbach, M. G., Bellur, S., Chung, M. Y., Fraustino, J. D., Dardis, F., & Ahern, L. (2015). Is it a sense of autonomy, control, or attachment? Exploring the effects of in-game customization on game enjoyment. Computers in Human Behavior, 48, 695–705. https://doi.org/10.1016/j.chb.2015.02.011
    連結:
  30. Kuo, Y. F., Wu, C. M., & Deng, W. J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behavior, 25(4), 887–896. https://doi.org/10.1016/j.chb.2009.03.003
    連結:
  31. Liljander, V., Van-Riel, A. C. R., & Pura, M. (2002). Customer satisfaction with e-services: the case of an on-line recruitment portal. In Electronic Services (pp. 407–432). Springer.
    連結:
  32. Liu, C., & Chang, I. (2016). Model of online game addiction  : The role of computer-mediated communication motives. Telematics and Informatics, 33(4), 904–915. https://doi.org/10.1016/j.tele.2016.02.002
    連結:
  33. Lu, H.-P., & Hsiao, K.-L. (2010). The influence of extro/introversion on the intention to pay for social networking sites. Information & Management, 47(3), 150–157. https://doi.org/10.1016/j.im.2010.01.003
    連結:
  34. Lu, H.-P., Lin, J. C. C., Hsiao, K.-L., & Cheng, L. T. (2010). Information sharing behaviour on blogs in Taiwan: Effects of interactivities and gender differences. Journal of Information Science, 36(3), 401–416. https://doi.org/10.1177/0165551510363631
    連結:
  35. Park, B. W., & Lee, K. C. (2011). Exploring the value of purchasing online game items. Computers in Human Behavior, 27(6), 2178–2185. https://doi.org/10.1016/j.chb.2011.06.013
    連結:
  36. Reijmersdal, E. A.Van, Jansz, J., Peters, O., & Noort, G.Van. (2013). Why girls go pink : Game character identification and game-players ’ motivations. Computers in Human Behavior, 29(6), 2640–2649. https://doi.org/10.1016/j.chb.2013.06.046
    連結:
  37. Santos, J. (2003). E‐service quality: a model of virtual service quality dimensions. Managing Service Quality: An International Journal, 13(3), 233–246. https://doi.org/10.1108/09604520310476490
    連結:
  38. See-To, E. W. K., Papagiannidis, S., & Cho, V. (2012). User experience on mobile video appreciation: How to engross users and to enhance their enjoyment in watching mobile video clips. Technological Forecasting and Social Change, 79(8), 1484–1494. https://doi.org/10.1016/j.techfore.2012.03.005
    連結:
  39. Sweeneya, J. C., & Soutar, G. N. (2001). Customer perceived value: The development of a multiple item scale in hospitals. Journal of Retailing, 77(2), 203–220. https://doi.org/http://dx.doi.org/10.1016/S0022-4359(01)00041-0
    連結:
  40. Tsai, H. T., & Huang, H. C. (2007). Determinants of e-repurchase intentions: An integrative model of quadruple retention drivers. Information & Management, 44(3), 231–239. https://doi.org/10.1016/j.im.2006.11.006
    連結:
  41. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
    連結:
  42. Walker, R. H., Johnson, L. W., & Leonard, S. (2006). Re‐thinking the conceptualization of customer value and service quality within the service‐profit chain. Managing Service Quality: An International Journal, 16(1), 23–36. https://doi.org/10.1108/09604520610639946
    連結:
  43. Wang, W.-T., Wang, Y.-S., & Liu, E.-R. (2016). The stickiness intention of group-buying websites: The integration of the commitment–trust theory and e-commerce success model. Information & Management, 53(5), 625–642. https://doi.org/10.1016/j.im.2016.01.006
    連結:
  44. Yang, H., Yu, J., Zo, H., & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256–269. https://doi.org/10.1016/j.tele.2015.08.007
    連結:
  45. Yeh, C. H., Wang, Y. S., & Yieh, K. (2016). Predicting smartphone brand loyalty: Consumer value and consumer-brand identification perspectives. International Journal of Information Management, 36(3), 245–257. https://doi.org/10.1016/j.ijinfomgt.2015.11.013
    連結:
  46. Zeithaml, V. A. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52(3), 2–22. https://doi.org/10.2307/1251446
    連結:
  47. Zhao, L., & Lu, Y. (2012). Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention. Decision Support Systems, 53(4), 825–834. https://doi.org/10.1016/j.dss.2012.05.019
    連結:
  48. Zhou, Z., Jin, X. L., & Fang, Y. (2014). Moderating role of gender in the relationships between perceived benefits and satisfaction in social virtual world continuance. Decision Support Systems, 65(C), 69–79. https://doi.org/10.1016/j.dss.2014.05.004
    連結:
  49. 中文網路資料
  50. CnBeta. (2017). 《Pokemon GO》美国区已流失五分之四活跃玩家. Retrieved July31, 2017, from http://hot.cnbeta.com/articles/game/599207.htm
  51. TANet. (2015). LBS的原理(室內、室外定位)與應用. Retrieved July31, 2017, from https://tp2rc.tanet.edu.tw/node/80
  52. 巴哈姆特. (2016). 巴哈裏數據. Retrieved July31, 2017, from https://prj.gamer.com.tw/20y/secret.php
  53. 巴哈姆特. (2017). 巴哈姆特電玩資訊站熱門看板. Retrieved April16, 2017, from https://www.gamer.com.tw/index2.php?ad=N
  54. 批踢踢實業坊(PTT). (2006). What is Ptt? Retrieved July31, 2017, from https://www.ptt.cc/index.html
  55. 李勁華. (2016). 從Pokémon GO熱潮談手機定位遊戲的歷史. Retrieved July31, 2017, from https://www.grandline.hk/2016/07/從pokemon-go熱潮談手機定位遊戲的歷史/
  56. 財團法人商業發展研究院. (2016). 2016台灣遊戲產業發展趨勢與商機. Retrieved July31, 2017, from http://www.pershing.com.tw/tw/download/seminar/20160311_seminar/handouts/160311_Session1_TW_Game_Industry_Dev_and_Trend_DrFan.pdf
  57. 鄭宏斌. (2016, August 7). 打造自己的寶可夢 文化部與科技部加強合作. 聯合報. Retrieved from http://udn.com/news/story/1/1878614
  58. 英文期刊、書藉
  59. Cai, S., Xu, Y. J., Yu, J., & DeSouza, R. (2008). Understanding Aesthetics Design for E-Commerce Web Sites: A Cognitive-Affective Framework. 12th Pacific Asia Conference on Information Systems (Pacis 2008), 579–590
  60. 1563.
  61. Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Mahwah, NJ.: Lawrence Erlbaum Associates. Retrieved from https://www.researchgate.net/publication/232569511_The_Partial_Least_Squares_Approach_to_Structural_Equation_Modeling
  62. Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
  63. Gallien, T. L., & Oomen-Early, J. (2008). Personalized Versus Collective Instructor Feedback in the Online Courseroom: Does Type of Feedback Affect Student Satisfaction, Academic Performance and Perceived Connectedness With the Instructor?. International Journal on E-Learning, 7(3), 463–476.
  64. Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis with Reading. Englewood Cliffs, NJ.: Prentice-Hall.
  65. Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web sites. International Journal of Human Computer Studies, 60(3), 269–298. https://doi.org/10.1016/j.ijhcs.2003.09.002
  66. Palloff, R. M., & Pratt, K. (2003). The Virtual Student: A Profile and Guide to Working with Online Learners. Jossey-Bass.
  67. Rozekhi, N. A., Hussin, S., & Noor, A. M. (2014). Attributable E-commerce toward Purchase Intention: Online Search of Food Product. The SIJ Transactions on Industrial, Financial & Business Management (IFBM), 2(3), 128–134.
  68. Shaheen, M., Cheng, B. L., & Lee, H. S. (2012). A Study of E-Shopping Intention In Malaysia: The Influence Of Generation X & Y. Australian Journal of Basic and Applied Sciences, 6(8), 28–35. Retrieved from https://www.researchgate.net/publication/262914183_A_Study_Of_E-Shopping_Intention_In_Malaysia_The_Influence_Of_Generation_X_Y
  69. Sheth, J. N., Newman, B. I., & Gross, B. L. (1991). Why we buy what we buy: A theory of consumption values. Journal of Business Research, 22(2), 159–170. https://doi.org/10.1016/0148-2963(91)90050-8
  70. 英文網路資料
  71. Alexa. (2017). The top 500 sites on the web. Retrieved July31, 2017, from https://www.alexa.com/topsites
  72. Csikszentmihalyi, M. (2016). Mihaly Csikszentmihalyi: All About Flow & Positive Psychology (+PDF). Retrieved July31, 2017, from https://positivepsychologyprogram.com/mihaly-csikszentmihalyi-father-of-flow/
  73. Google. (2016a). AdSense Help - Payment thresholds. Retrieved July31, 2017, from https://support.google.com/adsense/answer/1709871?hl=en
  74. Google. (2016b). Consumer Barometer with Google. Retrieved July31, 2017, from https://www.consumerbarometer.com/en/
  75. Google. (2016c). Play Console Help - Transaction fees. Retrieved July31, 2017, from https://support.google.com/googleplay/android-developer/answer/112622
  76. Guinness World Records. (2016). Pokémon Go catches five new world records. Retrieved July31, 2017, from http://www.guinnessworldrecords.com/news/2016/8/pokemon-go-catches-five-world-records-439327
  77. Millennialmedia. (2015). 2015 State of the Apps Industry Snapshot. Retrieved July31, 2017, from http://www.millennialmedia.com/mobile-insights/industry-research/2015-state-of-the-apps-industry-snapshot
  78. Newzoo. (2017). THE GLOBAL GAMES MARKET WILL REACH $108.9 BILLION IN 2017 WITH MOBILE TAKING 42%. Retrieved July31, 2017, from https://goo.gl/VCyanG
  79. Niantic. (2016a). Pokemon GO. Retrieved July31, 2017, from http://www.pokemongo.com/en-us/pokemon/
  80. Niantic. (2016b). Pokémon GO on Apple Watch. Retrieved July31, 2017, from https://support.pokemongo.nianticlabs.com/hc/en-us/articles/115000268888-Pokémon-GO-on-Apple-Watch
  81. Niantic. (2016c). Pokemon GO Plus. Retrieved July31, 2017, from http://www.pokemongo.com/en-us/pokemon-go-plus/
  82. Pew Research Center. (2016). Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. Retrieved July31, 2017, from http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
  83. Saylor Academy. (2012). 3.1: Maximizing in the Market Place. Retrieved July31, 2017, from https://learn.saylor.org/course/view.php?id=8§ionid=5196
  84. SensorTower. (2016a). Ending a Historic First Month, Pokémon GO Has Passed $200 Million in Worldwide Revenue. Retrieved July31, 2017, from https://sensortower.com/blog/pokemon-go-first-month
  85. SensorTower. (2016b). Pokémon GO Ends Its Reign as the Top Grossing U.S. iPhone App After 74 Days. Retrieved July31, 2017, from https://sensortower.com/blog/pokemon-go-top-grossing-comparison
  86. Slice Intelligence. (2016). Pokémon GO’s paying population dropped 79 percent but is still the most profitable mobile game. Retrieved July31, 2017, from https://intelligence.slice.com/pokemon-gos-paying-population-dropped-79-percent-still-profitable-mobile-game/
  87. TrendForce. (2016). TrendForce Says Worldwide Success of Pokémon GO Will Help Global AR Software Market Reach US$30 Billion in Scale by 2020. Retrieved July31, 2017, from http://technews.co/2016/07/25/trendforce-says-worldwide-success-of-pokemon-go-will-help-global-ar-software-market-reach-us30-billion-in-scale-by-2020/