英文摘要
|
With the rise of a new generation of information technology in recent years, the maker education movement has become a global phenomenon. Consequently, a dozen schools in Taiwan have embraced this global trend, gradually introducing maker education, particularly programming languages, throughout K-12 education. Nowadays, educational objectives in universities are becoming more homogenized, but lack interdisciplinary collaboration. Therefore, this study introduced educational approaches such as STEM (Science, Technology, Engineering, and Mathematics), experiential learning, and the combination of the cognitive and skills learning domains into the college curriculum, to explore the differences in students’ cognitive abilities and skills before and after the study period and propose a gender-appropriate technological higher-education curriculum. In this two-semester study, two different groups participated in each semester and their learning results compared. Three classes were included: 3D model design, 3D printer assembly, and Arduino program design. At the end of each semester, results of a student-designed automatic car speed competition, achievement tests, and 5C (complex problem-solving, creativity, communication, collaboration, and critical thinking) abilities were analyzed. The main findings were:
1.Compared with female students, males still show more interest in science, engineering, and technology; however, there is no significant difference between them in their results for the achievement and skills tests.
2.The 3D printer assembly class enhances the engineering knowledge of junior college students whose majors are related to computer science.
3.With regard to 5C abilities, students who participated in the research curriculum had higher average scores in creativity and complex problem-solving than the control group; the differences in their communication, collaboration, and critical thinking scores, though, were not significant.
|
参考文献
|
-
10.林珈緯, 黃天麒, 陳大仁, 黃彥彰, 劉立雯, & 李松霖. (2016). K-12 程式設計邏輯學習系統與教學模式發展與設計. 工程與科技教育學術研討會論文集, 263-272.
連結:
-
16.陳經燁. (2012). 國小學童親子共學 Scratch 程式設計之個案研究. 臺灣師範大學資訊教育學系學位論文, 1-46.
連結:
-
17.陳豐祥. (2009). 新修定布魯姆認知領域目標的理論內涵及其在歷史教學上的應用. 歷史教育.
連結:
-
22.楊朝智. (2010). 初探程式語言世界-Scratch 運用於國小電腦教學. 生活科技教育, 43(5), 87-100.
連結:
-
23.葉俊巖, & 羅希哲. (2015). 以 Maker 的角度來看臺灣小學的資訊教育. 臺灣教育評論月刊, 4(12), 110-114.
連結:
-
2.Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Allyn & Bacon.
連結:
-
3.Bassett, R. E., & Kibler, R. J. (1975). Effect of training in the use of behavioral objectives on student achievement. The Journal of Experimental Education, 44(2), 12-16.
連結:
-
7.Davis, S. M. (1989). From “future perfect”: Mass customizing. Planning review, 17(2), 16-21.
連結:
-
9.Duran, R. L. (1992). Communicative adaptability: A review of conceptualization and measurement. Communication Quarterly, 40(3), 253-268.
連結:
-
10.Faugel, H., & Bobkov, V. (2013). Open source hard-and software: Using Arduino boards to keep old hardware running. Fusion Engineering and Design, 88(6), 1276-1279.
連結:
-
11.George, M. D., & Bragg, S. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. DIANE Publishing.
連結:
-
15.Harrow, A. J. (1972). A taxonomy of the psychomotor domain: A guide for developing behavioral objectives. Addison-Wesley Longman Ltd.
連結:
-
17.Hobbs, T. (1986) 'The Rogers interview', Changes: Journal of the Psychology and Psychotherapy Association.
連結:
-
19.Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
連結:
-
20.Huang, T. C., & Lin, C. Y. (2017). From 3D modeling to 3D printing: Development of a differentiated spatial ability teaching model. Telematics and Informatics, 34(2), 604-613.
連結:
-
21.Jafri, R., Aljuhani, A. M., & Ali, S. A. (2015). A Tangible Interface-based Application for Teaching Tactual Shape Perception and Spatial Awareness Sub-Concepts to Visually Impaired Children. Procedia Manufacturing, 3, 5562-5569.
連結:
-
23.Ko, Y., An, J., & Park, N. (2012). Development of Computer, Math, Art Convergence Education Lesson Plans Based on Smart Grid Technology. In Computer applications for security, control and system engineering (pp. 109-114). Springer Berlin Heidelberg.
連結:
-
24.Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
連結:
-
26.Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552.
連結:
-
30.Mesas-Carrascosa, F. J., Santano, D. V., Merono, J. E., de la Orden, M. S., & García-Ferrer, A. (2015). Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering, 137, 73-83.
連結:
-
32.Rayna, T., & Striukova, L. (2015). From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102, 214-224.
連結:
-
33.Roberts, S. J. (2014). ENGage: The use of space and pixel art for increasing primary school children's interest in science, technology, engineering and mathematics. Acta Astronautica, 93, 34-44.
連結:
-
36.Shim, J., Kwon, D., & Lee, W. (2017). The Effects of a Robot Game Environment on Computer Programming Education for Elementary School Students. IEEE Transactions on Education, 60(2), 164-172.
連結:
-
37.Simpson, E. (1971). Educational objectives in the psychomotor domain. Behavioral objectives in curriculum development: Selected readings and bibliography, 60(2).
連結:
-
1.Simpson, Harrow 與 Goldberger 技能領域教育目標分類之比較研究. 2001.
-
2.王娟, 吳永和, 段晔, & 季隽. (2015). 3D 技術教育應用創新透視. 現代遠程教育研究1 (2015): 62-71.
-
3.白芳芸. (2010). 國中任教非主科的初任導師應用經驗學習圈於班級經營之行動研究.
-
4.何秀美. (2010). 創造思考技法融入國小 Scratch 程式設計教學之研究. 國立臺北教育大學教育傳播與科技研究所碩士論文, 臺北市.
-
5.呂國禎. (2016年05月24日). 互聯網+ 顛覆世界. 擷取自 天下雜誌: http://www.cw.com.tw/article/article.action?id=5076468
-
6.李名揚. (2012年12月). 科學素養 學習科學的新態度. 擷取自 科學人雜誌: http://sa.ylib.com/MagCont.aspx?PageIdx=1&Unit=featurearticles&id=2096
-
7.李昭伊, 劉君, & 盧泰天. (2011). 韓國技術教育發展的最新動向 - 以STEAM模型為中心的技術教育課程設計. 教育研究與評論:技術教育, (5), 13-19.
-
8.肖靜, & 李冬梅 (2012). 基於庫博經驗學習圈理論的商務英語實訓教學探索——以 POCIB 平台為例. 赤峰學院學報: 自然科學版, (19), 241-243.
-
9.林幸台, & 王木榮. (1994). 威廉斯創造力測驗指導手冊. 台北: 心理.
-
11.柳棟, 吳俊杰, 謝作如, 沈涓. (2013).STEM、STEAM 課程與可能的實踐路線. 中小學訊息技術雜誌, 6, 39-41.
-
12.張春興, & 林清山. (1983). 教育心理學 (pp. 206-207). 東華書局.
-
13.張霄亭. (2001). 教學原理. 國立空中大學.
-
14.教育部. (2014). 十二年國民基本教育課程綱要總綱. 取自 http://www.naer.edu.tw/files/15-1000-7944,c639-1.php.
-
15.陳智華(2010年12月8日). PISA評量/閱讀、數學、科學 上海三冠 台灣退步. 聯合報, A7版.
-
18.游光昭, 林坤誼, & 張良德. (2013). STEM 實作活動對 STEM 知識, 設計能力與動作技能統整之影響.
-
19.黃光雄, & 楊龍立. (2001). 課程設計: 理念與實務. 台北: 師大書苑.
-
20.黃政傑. (2005). 課程理論. 課程思想 (頁 1-24). 臺北縣: 冠學文化.
-
21.楊書銘. (2007). Scratch 程式設計對六年級學童邏輯推理能力, 問題解決能力及創造力的影響. 台北市立教育大學. 數學資訊教育學系數學資訊教育教學碩士學位班.
-
24.葉連祺(民 92). Bloom 認知領域教育目標分類修訂版之探討. 教育研究月刊, 105 期, 94-106 頁.
-
25.潘怡吟.(2001). 遊戲型態教學對國小學生自然與生活科技學習之研究,台北市立師範學院(未出版之碩士論文), 台北市.
-
-
1.Anderson, L. K. & Sosniak, L. A. (Eds.)(1994). Bloom’s taxonomy: A forty-year retrospective. Chicago, IL: The National Society for the study of Education.
-
4.Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals .
-
5.Clark,D.(2001).Learning Domains or Bloom's Taxonomy. Retrieved September29,2006,from http://www.nwlink.com/~donclark/hrd/bloom.html
-
6.Dave, R.H. (1970). Psychomotor levels in Developing and Writing Behavioral Objectives, pp.20-21. R.J. Armstrong, ed. Tucson, Arizona: Educational Innovators Press.
-
8.Dewey, J. (1938). Experience and education (First Touchstone edition 1997 ed.). New York, NY: Touchstone.
-
12.Goldberger, M. (1980). A taxonomy of psychomotor forms (No. 35). Institute for Research on Teaching, Michigan State University.
-
13.Gray, C. E., & Pierce, W. D. (1977). Educational Objectives and the Learning Domains: A New Formulation [And] Summary: Pierce-Gray Classification Model for the Cognitive, Affective and Psychomotor Domains.
-
14.Gronlund, N. E. (1995).How to write and use instructional objectives (5th ed.).Englewood Cliffs, New Jersey: Prentice Hall Inc.
-
16.Hira, A., Joslyn, C. H., & Hynes, M. M. (2014, October). Classroom makerspaces: Identifying the opportunities and challenges. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1-5). IEEE.
-
18.Hurd, P. D. (1975). Science, Technology, and Society: New Goals for Interdisciplinary Science Teaching. Science Teacher, 42(2), 27-30.
-
22.Jeng, J. H., & Tang, T. I. (2004). A Model of knowledge integration capability. Journal of Information, Technology and Society, 4(1), 13-45.
-
25.Kraft, R. J., & Sakofs, M. (1985). The Theory of Experiential Education.
-
27.Lewin, K. (1951). Field theory in social science.
-
28.Lock, J. (2013). Open source hardware. Technical Report, Department of Technology Management and Economics, Chalmers University of Technology.
-
29.Maker Faire(http://makerfaire.com)
-
31.PaDelford, H. E. (1984). Acquiring Psychomotor Skills. Journal of Epsilon Pi Tau, 10(2), 35-40.
-
34.Rogers, C. R. (1983). Freedom to learn for the 80's (No. 371.39 R724f). Ohio, US: Merrill Publishing, 1983.
-
35.Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary educational psychology, 19(4), 460-475.
-
38.Vandevelde, C., Saldien, J., Ciocci, C., & Vanderborght, B. (2013). Overview of technologies for building robots in the classroom. In International Conference on Robotics in Education (pp. 122-130).
|