题名

摻雜銀離子於主動層之鈣鈦礦太陽能電池研究

并列篇名

The study of perovskite solar cells with a silver iodide-doped active layer

作者

黃馨葒

关键词

none ; none

期刊名称

義守大學電子工程學系學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

蘇水祥

内容语文

繁體中文

中文摘要

本論文旨在以連續溶液法製作鈣鈦礦太陽能電池並探討其光電特性,分別於鈣鈦礦前驅材料碘化鉛(PbI2)及甲基碘化胺(MAI)中以氯化銀(AgCl)摻雜以及二甲基甲醯胺(DMF)添加劑方式置入。不參與鈣鈦礦結晶反應的銀離子及DMF分子占據鈣鈦礦框架中,利用分子交換方式延長鈣鈦礦反應進行時間,減緩鈣鈦礦快速反應結晶進而形成大晶粒尺寸且無缺陷之鈣鈦礦主動層,藉此提升元件能量轉換效率(power conversion efficiency, PCE)。 研究結果顯示,1 wt% AgCl摻雜及0.5 wt% DMF添加劑反應形成之鈣鈦礦主動層,可生成較大晶粒尺寸之鈣鈦礦結晶提升主動層對於光之吸收強度。在優化條件下元件展現出優異的光轉換能力、低遲滯現象以及延長壽命。最佳化之鈣鈦礦太陽能電池元件結構為 ITO/PEDOT:PSS/Perovskite/PCBM/Ag,元件特性:開路電壓(open circuit voltage, VOC)為0.89 V、短路電流密度(short circuit current density, JSC)為11.55 mA/cm2、填充因子(F.F.)為67.43%及PCE為6.90%。

英文摘要

In this thesis, polycrystalline perovskite films were synthesized by applying AgCl doping in PbI2/DMF solution and an additive of DMF into MAI/IPA solution using a two-step spin-coating method. Employing silver iodide (Ag+), chlorine incorporation and an additive of DMF could ingeniously prevent volume expansion and retard the crystal growth appropriately to further facilitate charge-transfer efficiency in pinhole-free perovskite films Under the conditions of doping 1 wt% of AgCl and 0.5 wt% of DMF as an additive to make the perovskite crystal-growth slowly and fabricate uniformly perovskite film with void-free and large grain size. The perovskite films exhibit an optimum light harvesting capability. Optimized solar cells achieve the highest power conversion efficiency (PCE) of 6.90% and fill factor (F.F.) of 67.43%, which is 35.0% higher than that of the pure PbI2-based one. This work provides a simple, low-cost but effective strategy to improve the PCE of the perovskite solar cells.

主题分类 電機資訊學院 > 電子工程學系
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. [3] J. Nelson, “The physics of solar cells”, Imperial College Press, London, p. 2, (2003).
    連結:
  2. [4] D.M. Chapin, C.S. Fuller, G.L. Pearson, ”A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 125, p. 676, (1954).
    連結:
  3. [5] N. J. Jeon, J. H. Noh, W. S. Yang, Y C Kim, S. C. Ryu, J. W. Seo, and Sang Il Seok, ”Compositional engineering of perovskite materials for high-performance solar cells”, Nature, vol. 517, p. 476, (2015).
    連結:
  4. [6] 黃建榮,”有機太陽能電池技術發展”,光連雙月刊,No.111, (2014)
    連結:
  5. [7] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci., vol. 7, p. 982, (2014).
    連結:
  6. [8] J.Burschka,N.Pellet,S.-J.Moon,R.Humphry-Baker,P.Gao,M.K.Nazeeruddin, M. Gra€tzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells.” Nature vol. 499 , p. 316, (2013).
    連結:
  7. [9] “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains” Science vol. 347, p.522, (2015).
    連結:
  8. [10] D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E.M.J. Johansson, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures” RSC Adv. vol. 3, p. 18762, (2013)
    連結:
  9. [11] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells”, Energy Environ. Sci. vol. 6, p.1739, (2013).
    連結:
  10. [14] S. Rait, S. Kashyap, P. K. Bhatnagar, P. C. Mathur, S. K. Sengupta and J. Kumar, “Improving power conversion efficiency in polythiophene/fullerene-based bulk heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 757, (2007).
    連結:
  11. [15] H. Kim, W. W. So, and S. J. Moon, “The importance of post-annealing process in the device performance of poly(3-hexythiophene): Methanofullerene polymer solar cell”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 581, (2006).
    連結:
  12. [16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, vol. 258, p. 1474, (1992).
    連結:
  13. [17] G. Li, V. Shrotriya, Y. Yao and Y. Yang, “Inversigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J.Appl. Phys., vol. 98, p. 043704, (2005).
    連結:
  14. [18] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat Mater, vol. 4, p. 864, (2005).
    連結:
  15. [19] V. Shrotriya, Y. Yao, G. Li, and Y. Yang, “Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance”, Appl. Phys. Lett., vol. 29, p. 063505, (2006).
    連結:
  16. [20] C. C. Chen, W. H. Chang, K. Yoshimura , K. Ohya , J. B. You, J. Gao, Z. Hong, and Y. Yang, “An Effi cient Triple-Junction Polymer Solar Cell Having a Power Conversion Effi ciency Exceeding 11%”, Adv. Mater., vol. 26, p. 5670, (2014).
    連結:
  17. [21] M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals”, J. Chem. Phys., vol. 38, p. 2024, (1963).
    連結:
  18. [23] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel & N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Nature, vol. 2, p. 591 (2012).
    連結:
  19. [24] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, “Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency”, Nat. Commun., vol. 5, p. 5834 (2014).
    連結:
  20. [26] L. Etgar, “Semiconductor Nanocrystals as Light Harvesters in Solar Cells”, Materials, vol. 6, p. 445 (2013).
    連結:
  21. [27] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells”, Nature Photonics, vol. 8, p. 489, (2014).
    連結:
  22. [28] N. K. Noel et al. “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications”, Energy Environ. Sci., vol. 7, p. 3061, (2014).
    連結:
  23. [29] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide Perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc., vol. 131, p. 6050 (2009).
    連結:
  24. [30] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel & N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Nature, vol. 2, p. 591 (2012).
    連結:
  25. [31] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, vol. 501, p. 395 (2013).
    連結:
  26. [32] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. B. You, Y. S. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science, vol. 345, p. 542 (2014).
    連結:
  27. [33] S. Luo, and W. A. Daoud, “Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design”, J. Mater. Chem. A., vol. 3, p. 8992, (2015).
    連結:
  28. [34] M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells”, Nature Photonics, vol. 8, p. 506, (2014).
    連結:
  29. [35] H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview”, J. Mater. Res., vol. 19, p. 1924 (2004).
    連結:
  30. [36] D. Giacomo F., S. Razza, F. Matteocci, et al., “High efficiency CH3NH3PbI(3 − x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer.”, J. Power Sources, , vol. 251, p. 152, (2014).
    連結:
  31. [37] A. Pockett, G. E. Eperon, T. Peltola, H. J. Snaith, A. Walker, L. M. Peter, and P. J. Cameron, “Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy”, J. Phys. Chem. C, vol. 119, p. 3456, (2015).
    連結:
  32. [38] M. M. Mandoc, “Effect of traps on the performance of bulk heterojunction organic solar cells”, Appl. Phys. Lett., vol.91, p. 263505, (2007).
    連結:
  33. [39] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, J. Appl. Phys., vol. 94, p. 6849, (2003).
    連結:
  34. [42] J. L. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques”, J. Am. Chem. Soc., vol. 9, p. 1955, (2015).
    連結:
  35. [43] Clever, H. L.; Johnston, F. J., “The Solubility of Some Sparingly Soluble Lead Salts - an Evaluation of the Solubility in Water and Aqueous-Electrolyte Solution”, J. Phys. Chem., vol. 9, p. 751, (1980).
    連結:
  36. [44] K. Sun, P. C. Li, Y. J. Xia, J. J. Chang, and J. Y. Ouyang, “Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode”, Appl. Mater. Interfaces, vol. 7, p. 15314, (2015).
    連結:
  37. [45] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells”, Adv. Mater., vol. 25, p. 3727, (2013).
    連結:
  38. [46] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 Perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater., vol. 26, p. 4107(2014).
    連結:
  39. [47] J. H. Im, I. H. Jang, N. Pellet, M. Grätzel, and N. G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells”, Nature, vol. 9, p. 927, (2014).
    連結:
  40. [48] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement”, Adv. Mater., vol. 26, p. 6503 (2014).
    連結:
  41. [49] B. S. Kim, T. M. Kim, M. S. Choi, H. S. Shim, and J. J. Kim, “Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers”, Org. Electron., vol. 17, p. 102 (2015).
    連結:
  42. [50] L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, and K. Leo, “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater., vol. 2, p. 081503(2014).
    連結:
  43. [51] Q. Chen, H. P. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc., vol. 136, p.622, (2014).
    連結:
  44. [52] L. C. Chen, J. C. Chen, C. C. Chen, and C. G. Wu, “Fabrication and Properties of High-Efficiency Perovskite/PCBM Organic Solar Cells”, Nanoscale Res. Lett., vol. 10, p. 312, (2015).
    連結:
  45. [53] W. Qiu , M. Buffière, G. Brammertz, U. W. Paetzold, L. Froyen, P. Hereman, and D. Cheyns, “High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step”, Org. Electron., vol.26, p. 30, (2015).
    連結:
  46. [54] S. Shahbazi, C. M. Tsai, S. Narra, C. Y. Wang, H. S. Shiu, S. Afshar, N. Taghavinia, and W. G. Diau, “Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p‑Type Character” J. Phys. Chem. C, vol. 121, p. 3673(2017).
    連結:
  47. [55] N. Yantara, F. Yanan, C. Shi, H. A. Dewi, P. P. Boix, S. G. Mhaisalkar, and N. Mathews, “Unravelling the Effects of Cl Addition in Single Step CH3NH3PbI3 Perovskite Solar Cells”, Chem. Mater. , vol. 27 (7), p. 2309(2015).
    連結:
  48. [56] M. Rokuzzaman, K. Ostrikov, H. Wang, A. Du, and T. Tesfamichael, “Towards Lead-free Perovskite Photovoltaics and Optoelectronics by ab-initio Simulations”, Scientific reports, vol. 7, p. 14025(2017).
    連結:
  49. [57] Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells”, Nano Lett. , vol. 14, p. 4158(2014).
    連結:
  50. [58] J. Wu, X. Xu, Y. Zhao, J. Shi, Y. Luo, D. Li, H. Wu, and Q. Meng, “DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, vol. 9, p.26937 (2017).
    連結:
  51. [59] Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. S. Liu, and Y. Yang,” Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells”, Nano Lett., vol. 14, p. 4158 (2014).
    連結:
  52. [60] P. L. Qi, Z. J. Wang, Z. T. Liu, S. F. Yang, Y. Yang, J. J. Yao, G. X. Zhang, D. Q. Zhang, “Conjugated donor–acceptor terpolymers entailing the pechmann dye and dithienyl-diketopyrrolopyrrole as co-electron acceptors: tuning HOMO/LUMO energies and photovoltaic performances”, Polym. Chem., vol. 7, p. 3838 (2016).
    連結:
  53. [1] R. D. Milan, “Renewables 2013 Global Status Report “, (2014).
  54. [2] E. Bacquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Cr. Acad. Sci. II. C., vol. 9, p. 561, (1839).
  55. [12] 陳方中,”高分子薄膜太陽能電池”,光電技術,No.18, (2008).
  56. [13] 許千樹,”奈米結構於有機高分子太陽能電池的應用”,TCIA台灣化學科技產業會刊,第十期,(2012).
  57. [22] D. I. K. Petritsch, “Organic solar cell architectures”, PhD Thesis by Dipl.Ing. Klaus Petritsch, (2000).
  58. [25] D. B. Mitzi, in Progress in Inorganic Chemistry, John Wiley &Sons, Inc., p. 1, (2007).
  59. [40] S.O. Kasap, “Optoelectronics and Photonics: Principles and Practices”, Pearson, p. 198, (2013).
  60. [41] 蔡進譯,”超高效率太陽電池從愛因斯坦的光電效應談起”,物理雙月刊,廿七卷,701頁,(2005).