题名

共價鍵結固定青花菜葉綠素酶1於磁性粒子用以生產葉綠素衍生物

并列篇名

Covalent Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) onto magnetic particles for production of chlorophyll derivatives

作者

黃文鴻

关键词

酵素固定化 ; 青花菜綠葉素酶1 ; 磁性氧化鐵粒子 ; 葉綠素衍生物 ; Enzyme immobilization ; Brassica oleracea chlorophyllase 1 (BoCLH1) ; magnetic particles ; Chlorophyll derivatives

期刊名称

義守大學化學工程學系暨生物技術與化學工程研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

李立群

内容语文

繁體中文

中文摘要

本研究成功將青花菜葉綠素酶1 (BoCHL1)之重組蛋白以共價鍵鍵結方式固定於APTES包覆的磁性氧化鐵氧化鐵粒子上, 而固定化效率可達到76.73±1.98%。固定化酵素催化水解葉綠素a的活性為40.4±0.09 U / g gel,而比活性為1.4±0.1 U / mg。固定化重組BoCHL1在無水環境下可催化葉綠素a和香茅醇進行轉酯化反應36小時可以明顯偵測到葉綠酸香茅酯的生合成,濃度為0.273 mM。而純化之游離重組BoCLH1的最適反應時間為48小時,只能生合成0.09 mM的葉綠酸香茅酯。比較游離與固定化酵素之生化特性顯示固定化酵素的最適反應溫度為20 °C,而純化游離之重組BoCLH1的最適反應溫度為30 °C;而固定化酵素在高溫環境下(40 和50 °C)的熱穩定度高於純化游離之酵素,且批次操作重複3個週期後,固定化酵素仍可維持約40%的殘留活性。此外,新合成物-葉綠酸香茅酯的抗氧化能力(37.6%)也高於葉綠素a (23.5%) 和香茅醇(31.7%)。由上述結果表明,利用APTES包覆的磁性氧化鐵以共價鍵鍵結方式固定重組BoCHL1可以有效提高酵素的穩定性、轉酯化合成活性、改善熱穩定性以及便於酵素回收而可達到3次的重覆使用率之優點,此技術可做為工業生產葉綠素衍生物之催化反應器,深具研究潛力。

英文摘要

In this study, the recombinant BoCLH1 was successfully immobilized on APTES-coated magnetic iron oxide particles (MIOPs) by covalent binding, led to markedly improve enzyme performance and decrease biocatalyst costs in industrial application. Immobilized enzyme showed high immobilization yield (76.73 ± 1.98%) and confirmed the immobilized recombinant BoCLH1 retained enzymatic activity with 40.4±0.09 U/g gel and the specific activity with 1.4 ± 0.1 U / mg protein by chlorophyllase assay. Immobilized enzyme could catalyze chlorophyll a and citronellol to a novel chlorophyll derivative (citronellylchlorophyl a ) by trans-esterification that was carried out for 36 hours under anhydrous conditions, and the concentration of citronellylchlorophyl a reached to 0.273 mM. However, the optimal reaction time of free enzyme was 48 hours, and the citronellylchlorophyl a prodution was 0.09 mM. Biochemical analysis of the immobilized and free enzyme, the optimum temperature for trans-esterification of the immobilized and free enzyme was at 20 °C and 30 °C, respectively. In addition, compared with free enzyme, the thermal stability of the immobilized enzyme showed higher activity of trans-esterification in high temperature environment (40 to 50 °C). A residual activity of approximately 40% was maintained after 3 cycles in a repeated-batch operation. In addition, the antioxidant capacity of the novel citronellylchlorophyl a (37.6%) was higher than chlorophyll a (23.5%) and citronellol (31.7%). Therefore, MIOPs-immobilized recombinant BoCLH1 can be repeatedly used to lower the cost and is potentially useful for the industrial production of chlorophyll derivatives.

主题分类 理工學院 > 化學工程學系暨生物技術與化學工程研究所
生物農學 > 生物科學
工程學 > 化學工業
参考文献
  1. [1]. Hortensteiner, S. “Chlorophyll breakdown in higher plants and algae” Cellular and Molecular Life Sciences , vol.56, pp.330-47, 1999. Review.
    連結:
  2. [2]. Hörtensteiner, S., Kräutler, B. “Chlorophyll breakdown in higher plants“ Biochim Biophys Acta , 1807, pp.977-988, 2011.
    連結:
  3. [3]. Tsuchiya, T.; Suzuki, T.; Yamada, T.; Shimada, H.; Masuda, T.; Ohta, H.; Takamiya, K. “Chlorophyllase as a serine hydrolase: Identification of a putative catalytic triad” Plant and Cell Physiology , vol.44, pp.96-101, 2003.
    連結:
  4. [4]. Kariola, T.; Brader, G.; Li J.; Palva, E.T. “Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants” The Plant Cell , vol.17(1),pp. 282-294, 2005.
    連結:
  5. [5]. Guyer L., Hofstetter S.S., Christ B., Lira B.S., Rossi M., Hörtensteiner S. “Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato” Plant Physiology , vol.166, no.1, pp.44-56, 2014.
    連結:
  6. [6]. Matile, P., Ho¨rtensteiner, S. and Thomas, H. “CHLOROPHYLL DEGRADATION” Annual review of plant physiology and plant molecular biology , vol.50, pp.67–95,1999.
    連結:
  7. [7]. Shioi, Y., Tatsumi, Y. and Shimokawa, K. ”Enzymatic degradation of chlorophyll in Chenopodium album” Plant and Cell Physiology , vol.32, pp.87–93, 1991.
    連結:
  8. [8]. Chih-Chung Yen, Yao-Chen Chuang , Chia-Yun Ko , Long-Fang . Chen ,Sheau-Shyang Chen , Chia-Jung Lin , Yi-Li Chou , and Jei-Fu Shaw, “Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives” Molecules , vol.21(8), pp.972-985, 2016.
    連結:
  9. [9]. Johnson-Flanagan, A. M., McLachlan, G. “The role of chlorophyllase in degreening canola (Brassica napus) seeds and its activation by sublethal freezing” Physiologia Plantarum , vol.80, pp.460-466, 1990.
    連結:
  10. [10]. Nishiyama, Y., Kitamura, M., Tamura, S., Watanabe, T. “Purification and substrate specificity of chlorophyllase from Chlorella regularis“ Chemistry Letters , vol.1, pp.69-72, 1994.
    連結:
  11. [11]. Arkus, K. A., Cahoon, E. B., Jez, J. M. “Mechanistic analysis of wheat chlorophyllase” Archives of Biochemistry and Biophysics , vol. 438, pp.146-155, 2005.
    連結:
  12. [12]. Terpstra, W. “Properties of chloroplasts and chloroplast fragments, as deduced from internal chlorophyll → chlorophyllide conversion” Zeitschrift für Pflanzenphysiologie , vol. 71, pp.129–143, 1974.
    連結:
  13. [13]. Tarasenko, L. G., Khodasevich, E. V. and Orlovskaya, K. I. “Location of chlorophyllase in chloroplast membranes” Photobiochemistry and photobiophysics , vol. 12, pp.119–121, 1986.
    連結:
  14. [14]. Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T., Takamiya, K. “Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate” Proceedings of the National Academy of Sciences of the United States of America , vol. 96, pp.15362-15367, 1999.
    連結:
  15. [15]. Takamiya, K. I., Tsuchiya, T., Ohta, H. “Degradation pathway(s) of chlorophyll: what has gene cloning revealed?” Trends in Plant Science , vol. 5, pp.426-431, 2000.
    連結:
  16. [16]. Trebitsh, T., Goldschmidt, E. E., Riov, J. “Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel” Proceedings of the National Academy of Sciences of the United States of America , vol. 90, pp.9441-9445, 1993.
    連結:
  17. [17]. Harpaz-Saad, S., Azoulay, T., Arazi, T., Ben-Yaakov, E., Mett, A., Shiboleth, Y. M., Hörtensteiner, S., Gidoni, D., Gal-On, A., Goldschmidt, E. E., Eyal, Y. “Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated” The Plant Cell , vol. 19, pp.1007-1022, 2007.
    連結:
  18. [18]. Okazawa, A., Tango, L., Itoh, Y., Fukusaki, E., Kobayashi, A. “Characterization and subcellular localization of chlorophyllase from Ginkgo biloba” Zeitschrift für Naturforschung C , vol. 61, pp.111-117, 2006.
    連結:
  19. [19]. Azoulay-Shemer, T., Harpaz-Saad, S., Cohen-Peer, R., Mett, A., Spicer, V., Lovat, N., Krokhin, O., Brand, A., Gidoni, D., Standing, K. G., Goldschmidt, E. E., Eyal, Y. “Dual N- and C-terminal processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzyme” Plant and Cell Physiology , vol. 52, pp.70-83, 2011.
    連結:
  20. [20]. Azoulay-Shemer, T., Harpaz-Saad, S., Belausov, E., Lovat, N., Krokhin, O., Spicer, V., Standing, K. G., Goldschmidt, E. E., Eyal, Y. “Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization” Plant Physiology , vol. 148, pp.108-118, 2008.
    連結:
  21. [21]. Yi-Li Chou, Chia-Yun Ko, Chih-Chung Yen, Long-Fang O. Chen, and Jei-Fu Shaw. “A Novel Recombinant Chlorophyllase1 from Chlamydomonas reinhardtii for the Production of Chlorophyllide Derivatives” Journal of Agricultural and Food Chemistry , Nov 4, no. 63, pp.9496-503, 2015.
    連結:
  22. [22]. Lee, G. C., Chepyshko, H., Chen, H. H., Chu, C. C., Chou, Y. F., Akoh, C. C., Shaw, J. F. “Genes and biochemical characterization of three novel chlorophyllase isozymes from Brassica oleracea” Journal of Agricultural and Food Chemistry , vol. 58, pp.8651-8657, 2010.
    連結:
  23. [23]. Matile, P., Schellenberg, M., Vicentini, F. “Localization of chlorophyllase in the chloroplast envelope” Planta , vol. 201, pp.96-99, 1997.
    連結:
  24. [24]. Rost, B., Yachdav, G., Liu, J. “The PredictProtein server” Nucleic Acids Research , vol. 32, pp.321-326, 2004.
    連結:
  25. [25]. Tucker, D. L., Sherman, L. A. “Analysis of chlorophyll-protein complexes from the cyanobacterium Cyanothece sp. ATCC 51142 by non-denaturing gel electrophoresis” Biochimica et Biophysica Acta , vol. 1468, pp.150-160, 2000.
    連結:
  26. [26]. Gupta, S., Gupta, S. M., Sane, A. P., Kumar, N. “Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown” Molecular Biology Reports , vol. 39, pp.7133-7142, 2012.
    連結:
  27. [27]. Tamai, H., Shioi, Y., Sasa, T. Studies on chlorophyllase of Chlorella protothecoides IV. “Some properties of the purified enzyme” Plant and Cell Physiology , vol. 20, pp.1141-1145, 1979.
    連結:
  28. [29]. Bacon, M. F., Holden, M. “Chlorophyllase of sugar-beet leaves” Phytochemistry , vol. 9, pp.115-125, 1970.
    連結:
  29. [30]. Shimokawa, K. “Purification of ethylene-enhanced chlorophyllase from Citrus unshiu fruits” Agricultural and Biological Chemistry , vol. 45, pp.2357-2359, 1981.
    連結:
  30. [31]. Kuroki, M., Shioi, Y., Sasa, T. “Purification and properties of soluble chlorophyllase from tea leaf sprouts” Plant and Cell Physiology , vol. 22, pp.717-725, 1981.
    連結:
  31. [32]. Mínguez-Mosquera, M. I., Gandul-Rojas, B., “Gallardo-Guerrero, L. Measurement of chlorophyllase activity in olive fruit (Olea europaea)” The Journal of Biochemistry , vol. 116, pp.263-268, 1994.
    連結:
  32. [33]. Hornero-Méndez, D., Mínguez-Mosquera, M. I. “Properties of chlorophyllase from Capsicum annuum L. fruits” Zeitschrift für Naturforschung C , vol. 56, pp.1015-1021, 2001.
    連結:
  33. [34]. Li, Y. H., Gu, W., Ni, D. J., Zheng, F., Rao, R., Fan, S. S. “Preliminary studies on extraction, purification and characterization of chlorophyllase from tea leaves (Camellia sinensis)” Journal of Tea Science Research , vol. 29, pp.412-418, 2009.
    連結:
  34. [35]. Tsuchiya, T., Suzuki, T., Yamada, T., Shimada, H., Masuda, T., Ohta, H., Takamiya, K. “Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad” Plant and Cell Physiology , vol. 44, pp.96-101, 2003.
    連結:
  35. [36]. Levadoux, W. L., Kalmokoff, M. L., Pickard, M. D., GrootWassink, J. W. D. “Pigment removal from canola oil using chlorophyllase” Journal of the American Oil Chemists' Society , vol. 64, pp.139-144, 1987.
    連結:
  36. [37]. Bitar, M., Karboune, S., Bisakowski, B., Kermasha, S. “Chlorophyllase biocatalysis in an aqueous/miscible organic solvent medium containing canola oil” Journal of the American Oil Chemists' Society , vol. 81, pp.927-932, 2004.
    連結:
  37. [38]. Hsu, C.Y.; Yang, C.M.; Chen, C.M.; Chao, P.Y.; Hu, S.P. “Effects of chlorophyll-related compounds on hydrogen peroxide induced DNA damage within human lymphocytes.” Journal of Agricultural and Food Chemistry , vol. 53, no.7, pp.2746-2750, 2005.
    連結:
  38. [39]. Hsu, C.Y.; Chen, Y.H.; Chao, P.Y.; Chen, C.M.; Hsieh, L.L.; Hu, S.P. “Naturally occurring chlorophyll derivatives inhibit aflatoxin B1-DNA adduct formation in hepatoma cells” Mutation Research , vol. 657, pp. 98−104, 2008.
    連結:
  39. [40]. Guo, H.; Pan, X.; Mao, R.; Zhang, X.; Wang, L.; Lu, X.; Chang, J.; Guo, J.T.; Passic, S.; Krebs, F.C.; Wigdahl, B.; Warren, T.K.; Retterer, C.J.; Bavari, S.; Xu, X.; Cuconati, A.; Block, T.M. “Alkylated porphyrins have broad antiviral activity against hepadnaviruses, flaviviruses, filoviruses, and arenaviruses” Antimicrobial Agents Chemotherapy , vol. 55, pp.478-48, 2011.
    連結:
  40. [43]. Aachoui, Y., Schulte, M. L., Fitch, R. W., Ghosh, S. K. “Synthetic adjuvants for vaccine formulations: Evaluation of new phytol derivatives in induction and persistence of specific immune response” Cellular Immunology , vol. 271, pp.308-318, 2011.
    連結:
  41. [44]. Schuitmaker, J. J., van Best, J. A., van Delft, J. L., Dubbelman, T. M., Oosterhuis, J. A., de Wolff-Rouendaal, D. “Bacteriochlorin a, a new photosensitizer in photodynamic therapy. In vivo results” Investigative Ophthalmology and Visual Science , vol. 31, pp.1444-1450, 1990.
    連結:
  42. [45]. Azizullah, A.; Rehman, Z.U.; Ali, I.; Murad, W.; Muhammad, N.; Ullah, W.; Häder, D.P. “Chlorophyll derivatives can be an efficient weapon in the fight against dengue” Parasitology Research , vol.113, no.12, pp.4321-4326, 2014.
    連結:
  43. [46]. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., Fernández-Lafuente, R. “Improvement of enzyme activity, stability and selectivity via immobilization techniques” Enzyme and Microbial Technology , vol. 40, pp.1451-1463, 2007.
    連結:
  44. [48]. Bornscheuer, U. T. “Immobilizing enzymes: How to create more suitable biocatalysts” Angewandte Chemie International Edition , vol. 42, pp.3336-3337, 2003.
    連結:
  45. [49]. Garcia-Galan, C., Berenguer-Murcia, Á., Fernández-Lafuente, R., Rodrigues, R. C. “Potential of different enzyme immobilization strategies to improve enzyme performance” Advanced Synthesis and Catalysis , vol. 353, pp.2885-2904, 2011.
    連結:
  46. [50]. Brady, D., Jordaan, J. “Advances in enzyme immobilisation” Biotechnology Letters , vol. 31, pp.1639-1650, 2009.
    連結:
  47. [51]. Rodrigues, R. C., Berenguer-Murcia, Á., Fernández-Lafuente, R. “Coupling chemical modification and immobilization to improve the catalytic performance of enzymes” Advanced Synthesis and Catalysis , vol. 353, pp.2216-2238, 2011.
    連結:
  48. [52]. Datta, S.; Christena, L.R.; Rajaram, Y.R.S. “Enzyme immobilization: An overview on techniques and support materials” 3 Biotech , vol. 3, pp.1–9, 2013.
    連結:
  49. [54]. Johnson, A.K.; Zawadzka, A.M.; Deobald, L.A.; Crawford, R.L.; Paszczynski, A.J. “Novel method for immobilization of enzymes to magnetic nanoparticles” Journal of Nanoparticle Research , vol. 10, pp.1009–1025, 2008.
    連結:
  50. [55]. Solanki, K.; Gupta, M.N. “Simultaneous purification and immobilization of Candida rosa lipase on superparamagnetic Fe3O4 nanoparticles for catalyzing transesterification reactions” New Journal of Chemistry , vol. 35, pp.2551–2556, 2011.
    連結:
  51. [56]. Chen, Y.Y.; Tsai, M.G.; Chi, M.C.; Wang, T.F.; Lin, L.L. “Covalent immobilization of Bacillus licheniformis-Glutamyltranspeptidase on aldehyde-functionalized magnetic nanoparticles” International Journal of Molecular Sciences , vol. 14, pp.4613–4628, 2013.
    連結:
  52. [57]. Yang, C.H.; Yen, C.C.; Jheng, J.J.; Wang, C.Y.; Chen, S.S.; Huang, P.Y.; Huang, K.S.; Shaw, J.F. “Immobilization of Brassica oleracea chlorophyllase 1 (BoCLH1) and Candida rugosa lipase (CRL) in magnetic alginate beads: corresponding proteins” Molecules , vol. 19, pp.11800–11815, 2014.
    連結:
  53. [58]. Sheldon, R. A. “Enzyme immobilisation: the quest for optimum performance” Advanced Synthesis and Catalysis , vol. 349, pp.1289-1307, 2007.
    連結:
  54. [59]. Shen, Q., Yang, R., Hua, X., Ye, F., Zhang, W., Zhao, W. “Gelatin-templated biomimetic calcification for β-galactosidase immobilization” Process Biochemistry , vol. 46, pp.1565-1571, 2011.
    連結:
  55. [60]. Kunamneni, A., Ghazi, I., Camarero, S., Ballesteros, A., Plou, F. J., Alcalde, M. “Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers” Process Biochemistry , vol. 43, pp.169-178, 2008.
    連結:
  56. [61]. Sardar, M., Roy, I., Gupta, M. N. “Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer EudragitTM L-100” Enzyme and Microbial Technology , vol. 27, pp.672-679, 2000.
    連結:
  57. [62]. Ho, L. F., Li, S. Y., Lin, S. C., Hsu, W. H. “Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents” Process Biochemistry , vol. 39, pp.1573-1581, 2004.
    連結:
  58. [63]. Fernández-Lafuente, R. “Stabilization of multimeric enzymes: strategies to prevent subunit dissociation” Enzyme and Microbial Technology , vol. 45, pp.405-418, 2009.
    連結:
  59. [64]. Krenkova, J., Foret, F. “Immobilized microfluidic enzymatic reactors” Electrophoresis , vol. 25, pp.3550-3563, 2004.
    連結:
  60. [65]. Karboune, S.; Neufeld, R.; Kermasha, S. “Immobilization and biocatalysis of chlorophyllase in selected organic solvent systems” Journal of Biotechnology , vol. 21, no. 120(3), pp.273-283, 2005.
    連結:
  61. [66]. Zucca, P., Sanjust, E. “Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms” Molecules , vol. 19, pp.14139-14194, 2014.
    連結:
  62. [67]. Cao, L., van Langen, L. M., van Rantwijk, F., Sheldon, R. A. “Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of β-lactam antibiotics” Journal of Molecular Catalysis B: Enzymatic , vol. 11, pp.665-670, 2001.
    連結:
  63. [68]. Roy, J. J., Abraham, T. E. “Strategies in making cross-linked enzyme crystals” Chemical Reviews , vol. 104, pp.3705-3722, 2004.
    連結:
  64. [69]. Brady, D., Steenkamp, L., Reddy, S., Skein, E., Chaplin, J. “Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR” Enzyme and Microbial Technology , vol. 34, pp.283-291, 2004.
    連結:
  65. [71]. Sheldon, R. A., Schoevaart, R., van Langen, I. M. “Crosslinked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review)” Biocatalysis and Biotransformation , vol. 23, pp.141-147, 2005.
    連結:
  66. [72]. Shaw, J. F., Wang, D. L. and Wang, Y. J. “Lipase-Catalyzed Ethanolysis and Isopropanolysis of Triglycerides with Long-Chain Fatty Acids” Enzyme and Microbial Technology , vol. 13, pp.544-546, 1991.
    連結:
  67. [73]. Su, Y. W., Chao, S. H., Lee, M. H., Ou, T. Y. and Tsai, Y. C..” Inhibitory effects of citronellol and geraniol on nitric oxide and prostaglandin E₂production in macrophages” Planta Medica , vol. 76, no. 15, 1666-1671, 2010.
    連結:
  68. [74]. Enujiugha V. N., Talabi J. Y., Malomo S. A., Olagunju A. I. “DPPH Radical Scavenging Capacity of Phenolic Extracts from African Yam Bean (Sphenostylis stenocarpa)” Food and Nutrition Sciences , vol. 3, pp.7-13, 2012.
    連結:
  69. [75]. Chou, Y.L., Ko, C.Y., Chen, L.F., Yen, C.C., Shaw, J.F. “Purification and immobilization of the recombinant Brassica oleracea Chlorophyllase 1 (BoCLH1) on DIAION®CR11 as potential biocatalyst for the production of chlorophyllide and phytol” Molecules , vol. 20, pp.3744–3757, 2015.
    連結:
  70. [76]. Hwang, E.T.; Gu, M.B. “Enzyme stabilization by nano/microsized hybrid materials” Engineering in Life Sciences , vol. 13, pp.49–61, 2013.
    連結:
  71. [77]. Gulay Bayramoglu, Aydin Akbulut, V. Cengiz Ozalp, M. Yakup Aricab “Immobilized lipase on micro-porous biosilica forenzymatic transesterification of algal oil” Chemical Engineering Research and Design , vol. 95, pp.12-21, 2015.
    連結:
  72. [78]. Iyer, P. V., Ananthanarayan, L.” Enzyme stability and stabilization-aqueous and non-aqueous environment” Process Biochemistry , vol. 43, pp.1019-1032, 2008.
    連結:
  73. [79]. Verma, M.L., Barrow, C.J., Kennedy, J.F., Puri, M., “Immobilization of β-D-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis” International Journal of Biological Macromolecules , vol. 50, no. 2, 432-437, 2012.
    連結:
  74. [80]. Lima F.V., Pyle D.L., Asenjo J.A., “Factors affecting the esterification of lauric acid using an immobilized biocatalyst: Enzyme characterization and studies in a well-mixed reactor” Biotechnology and Bioengineering , vol. 46, pp.69-79, 1995.
    連結:
  75. [81]. Otávio L. B., Juliana V. B., Márcia C. M. R. L., Denise M. G. F., Marta A. P. L., “Biodiesel fuel production by the transesterification reaction of soybean oil using immobilized lipase” Applied Biochemistry and Biotechnology , vol. 137, pp. 105–114, 2007.
    連結:
  76. [28]. Klein, A. O., Vishniac, W. “Activity and partial purification of chlorophyllase in aqueous” The Journal of Biological Chemistry , vol. 236, pp.2544-2547, 1961.
  77. [41]. Komiya, T., Kyohkon, M., Ohwaki, S., Eto, J., Katsuzaki, H., Imai, K., Kataoka, T., Yoshioka, K., Ishii, Y., Hibasami, H. “ Phytol induces programmed cell death in human lymphoid leukemia Molt 4B cells” International Journal of Molecular Medicine , vol. 4, pp.377-380, 1999.
  78. [42]. Saikia, D., Parihar, S., Chanda, D., Ojha, S., Kumar, J. K., Chanotiya, C. S., Shanker, K., Negi, A. S. “Antitubercular potential of some semisynthetic analogues of phytol” Bioorganic and Medicinal Chemistry Letters , vol. 20, pp.508-512, 2010.
  79. [53]. Kouassi, G.K.; Irudayaraj, J.; McCarty, G. “Examination of Cholesterol oxidase attachment to magnetic nanoparticles” Journal of Nanobiotechnology , vol. 20, pp.1–9, 2005.
  80. [70]. Lo´pez-Serrano, P., Cao, L., van Rantwijk, F., Sheldon, R. A. “Cross-linked enzyme aggregates with enhanced activity: application to lipases” Biotechnology Letters , vol. 24, pp.1379-1383, 2002.