题名

不同熱處理溫度條件對單方向凝固CM-681LC鎳基超合金之微結構及高溫潛變之影響

并列篇名

Effects of Different Heat Treatment Temperatures on Microstructure and High-Temperature Creep of Directionally Solidified CM-681LC Ni-Based Superalloy

作者

張芷旖

关键词

CM-681 LC鎳基超合金 ; 單方向凝固 ; 熱處理 ; 高溫潛變 ; 差排 ; CM-681LC superalloy ; directionally solidification ; heat treatment ; creep ; dislocation

期刊名称

義守大學材料科學與工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

簡賸瑞

内容语文

繁體中文

中文摘要

本研究採用CM-681LC鎳基超合金為材料基礎。一開始先將試棒進行單方向凝固製程,條件為:180mm/hr、溫度1550℃,使試棒鑄造成為單方向晶的試棒。而後使用不同的熱處理製程進行實驗,本研究有兩種熱處理條件,其一是規範所給的條件,為HT1;另一為使用示差掃描量熱儀(Differential Scanning Calorimetry,DSC)所取的條件,為HT2。HT1:固溶溫度1185℃/4hr/ArC,搭配第一次時效1038℃/2hr和第二次時效870℃/20hr/ArC;HT2:固溶溫度1270℃/4hr/ArC,搭配第一次時效1038℃/2hr和第二次時效870℃/20hr/ArC,只有固溶熱處溫度不同,第一次時效熱處理以及第二次時效熱處理是相同的。探討兩者之間微結構的不同與高溫潛變的不同。本實驗透過掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)、能量散射光譜儀(Energy Dispersive Spectrometer,EDS)和穿透式電子顯微鏡(Translation Electron Microscopy,TEM)等方式進行微觀組織的觀察。機械性質潛變測試之測試條件為1050℃/200MPa,屬於超高溫低應力之潛變測試。研究結果顯示,HT2因為其γˊ相因為熱處理程序較佳,使得γˊ相體積分率比HT1大與γ channel寬度也比HT1窄,因此潛變測試過程中差排不易移動,使CM-681 LC的機械性質增加。

英文摘要

In this study, CM-681LC nickel-based superalloy was selected as the base material with two solution heat treatment temperatures, HT1: 1185℃ for 4hr with Argon cooling to the ambient temperature, which is according to the Cannon-Muskegon Co. Technical Bulletin; HT2: 1270℃ for 4hr with Argon cooling, which is based upon Differential Scanning Calorimetry results. The aging heat treatment has two steps; the first aging is at 1038℃ for 2hr with Argon cooling followed by the second aging temperature at 870℃ for 20hr with Argon cooling. Directionally solidified round bar specimens were produced by typical Bridgeman type casting furnace. Microscopic observations were carried out by Scanning Electron Microscopy with Energy Dispersive Spectrometer and Transmitted Microscopy. Creep tests at 1050℃ and 200MPa were conducted by ATS level arm creep tester. Creep rupture life of HT1 and HT2 is 43 and 64 hours, respectively. Since HT2 produces uniformly distributed cuboidal γ' precipitates with 0.29 µm average size and 84.5% volume fraction, the γ channel width is 9.15 nm, which is narrower than that of HT1 10.26 nm. Uniformly distributed γ′ precipitates and narrower γ channel width could result in higher Orowan bowing shear stress, which might have efficiently stuck the dislocation motions across the precipitates; consequently, creep rupture life of HT2 is 21 hours overrun at the ultra-high temperature regime.

主题分类 理工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. [7] Harris, United States Patent 6,632,299, 2003.
    連結:
  2. [8] C. T. Sims, N. S. Stoloff and W. C. Hagel, Superalloys II 1st edition, John Wiley & Sons, New Tork, 1981.
    連結:
  3. [9] R. C. Reed, The Superalloys Fundamentals and Applications 1st edition, Cambridge university press, New York, 2006.
    連結:
  4. [10] 薄慧雲, 魏肇男, 廖健鴻, 洪炎輝, 鄭榮瑞, 葛平亞‧張 立, 鄭文興,馬堅勇, “熱均壓對微細鑄造CM-681LC 超合金顯微組織及機械性能影響之研究”, 鑄造工程學刊, Vol. 33, No 2, (2007), pp.26-39.
    連結:
  5. [11] 魏肇男,“熱均壓對微細鑄造CM-681LC 超合金顯微組織及機械性能影響之研究”,交通大學材料科學與工程所博士論文,2010年。
    連結:
  6. [12] C. T. Sims, N. S. Stoloff and W. C. Hagel (Eds), Superalloy II 1st edition, John Wiley & Sons, New York, 1987.
    連結:
  7. [13] Matthew J. Donachie and Stephen J. Donachie, Superalloy a Technical Guide 2nd edition, ASM internaltional, USA, 2002.
    連結:
  8. [14] D. C. Madeleine, The Microstructure of Superalloys, CRC PRESS, p. 53, 1997.
    連結:
  9. [22] S. Steinbach and L. Ratke, “The Influence of Fluid Flow on the Microstructure of Directionally Solidified AlSi-Base Alloys”, vol.38, 2007, pp.1388-1394.
    連結:
  10. [35] M. D. Trecler, B. C. Chuech and T. H. Sanders, “Determination of the Ni3(Ti,Al) dissolution boundary in a directionally solidified superalloy”, Scripta Materialia, vol.55, 2006, pp.561-564.
    連結:
  11. [40] T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep Behaviour of Ni-Base Single-Crystal Superalloys with Various γˊ Volume Fraction, Acta Materialia, pp. 3737-3744, 2004.
    連結:
  12. [45] R. A. Mackay and L. J. Ebert, “Factors Which Infiuence Directional Coarsening of γ' During Creep in Nickel-Base Superalloy”, mining metallurgical and petroleum engineers. Int. Conf, pennsylvania, October 1984, p.2.
    連結:
  13. [47] I. S. Kim, B. G. Choi, S. M. Seo, D. H. Kim and C. Y. Jo, “Influence of heat treatment on microstructure and tensile properties of conventionally cast and directionally solidified superalloy CM247LC”, Materials letters, vol.62, 2008, pp.1110-1113.
    連結:
  14. [1] 李名言,“鎳基合金材質特性介紹”,中工高雄會刊 第21卷 第一期。.
  15. [2] 網路 http://www.superrune.com/gallery/images/2001_x35_03.jpg
  16. [3] 網路 http://www.boston.com/business/ticker/f135cutaway1107.jpg
  17. [4] 網路 http://en.wikipedia.org/wiki/File:JetEngineGraph-LiftFan.PNG
  18. [5] M. J. Donachie and S. J. Donachie, Superalloys A Technical Guide 2nd Edition, ASM International, USA, 2002.
  19. [6] F. R. N. Nabarro and H. L. de Villiers, The Physics of Creep 1st edition, CRC Press, British, 1995.
  20. [15] W. Kurz and D. J. Fisher, Fundamentals of Solidification, 4th Revised Edition, Trans Tech Publications Ltd, pp. 87-89, 1998.
  21. [16] 網路 http://www.me.ncu.edu.tw/teacher/Subject, 第四節, 單相合金凝固, pp. 29-30。
  22. [17] J. Heslop, Cobalt, 1964, vol.24, pp.128.
  23. [18] Z. Yang, Y.T. Xiao and C.X. Shi, Materials Science and Engineering A, 101, 1989, pp.65-73.
  24. [19] Y, Koizumi, M. Yamazaki and H. Harada, Trans. Natl. Res. Inst. Met.(JP), vol.22, 1980, pp.32.
  25. [20] M.V. Nathal, R.D. Maier and L.J. Ebert, Met. Trans. A, vol.13A, 1982, pp.1767-1774.
  26. [21] J.E. Doherty, B.H. Kear and A.F. Giamei, Journal of Metals, vol.23, No.11, Nov. 1971, pp.59-62.
  27. [23] J.J. Jackson, M.J. Donachii, R.J. Henricks and M. Gell, Met. Tran., vol.8A, 1977, pp.1615-1620.
  28. [24] D.N. Duhl and C.P. Sullivan, Journal of Metals, vol.23, Jul. 1971, pp. 38-40.
  29. [25] A.F. Giamei and D.L. Anton, Metallurgical Transactions A, vol.16A, 1985, pp.1985-2005.
  30. [26] J. R. Davis, Heat Resistant Materials 1st edition, Materials Park:ASM International, USA, 1997.
  31. [27] J. Cadek, Creep in Metallic Materials, Material Science, Czechoslovakia, 1988, pp.177-200.
  32. [28] M.V. Nathal, R.D. Maier and L.J. Ebert, Met. Trans. A, vol.13A, 1982, pp.1767-1774.
  33. [29] C. A. Keyser, Materials Science in Engineering 3rd edition, Prentice Hall, USA, 1956, pp.107-113.
  34. [30] M. E. Kassner and M. T. Perez-Prado, Fundamentals of Creep in Metals and Alloy, Elseviler, pp. 7-29, 2004.
  35. [31] K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, TMS 2004, pp.25-34.
  36. [32] T. H. Courtney, Mechanical Behavior of Materials 2nd edition, McGraw-Hill, New York, 2000.
  37. [33] Cannon-Muskegon Co., “CM 681 LC®ALLOY”, Technical Bulletin, December 2003.
  38. [34] F. Binczyk, J. Sleziona, J. Cwajna and S. Roskosz, “ATD and DSC analyses of nickel superalloys”, Archives of Foundry Engineering, vol.8, 2008, pp.5-8.
  39. [36] F. Binczyk and J. Sleziona, “The ATD thermal anaiysis of seclected nickel superalloy”, Archives of Foundry Engineering, vol.10, 2010, pp.13-18.
  40. [37] Handbook Committee, Heat Treating 10 edition, ASM International, USA, 1991, p.812.
  41. [38] S. Jason, Microstructure and High Temperature Creep of Platinum Group Metal Modified Nicel Base Superalloys, The University of Michigan, U.S.A, 2010.
  42. [39] D. J. Allen and J. D. Hunt, Solidification and casting of metals, Metals Socirty, p. 131, 1979.
  43. [41] G. K. Bouse and M. R. Behrendt, Int. Symposium on Metallurgy and Application of Superalloy 718, Pittsburgh, PA, pp. 319-328, 1989.
  44. [42] Cannon-Muskegon Co., “CM 681 LC®ALLOY”, Technical Bulletin, December 2003.
  45. [43] AdvancedSuperalloysandTailoredMicrostructuresforIntegrallyCastTurbineWheels. Superalloys2000(TMS)9th, 2000,pps171-179
  46. [44] The institute of metals,Solidification Processing,1st edition,CRC Press,london,1987,pp.156-157
  47. [46] F. R. N. Nabarro and H. L. de Villiers, The Physics of Creep 1st edition, CRC Press, British, 1995.
  48. [48] M. A. Meyers and K. K. Chawla, Mechianical Metallurgy, Prentice-Hall, 1984.
  49. [49] G. E. Dieter, Mechianical Metallurgy 3rd edition, McGraw-Hill, New York, 1986, pp.201-203.
  50. [50] Mikael Segersäll, “Nickel-Based Sigle-Crystal Superaollys”, Linköping University, March 2013.