题名

聚苯胺-銅奈米粒子修飾石墨烯之複合材料於氨氣感測之應用

并列篇名

Polyaniline-Reduced Graphene Oxide-Copper nanoparticles Nanocomposite for Ammonia Gas Sensing

作者

王景暉

关键词

氨氣 ; 氣體感測器 ; 聚苯胺 ; 還原態氧化石墨烯 ; 奈米複合材料 ; Ammonia ; gas sensor ; Polyaniline ; Reduced graphene oxide ; Nano composites

期刊名称

義守大學化學工程學系暨生物技術與化學工程研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

梁明在

内容语文

繁體中文

中文摘要

本研究目的為發展可於一般室溫環境下能對氨氣具有高靈敏度的氨氣感測器。結合銅奈米粒子修飾之還原態氧化石墨烯及聚苯胺之複合材料,分別借重聚苯胺可在室溫的環境下對氨氣具有獨特的氧化還原性質、還原態氧化石墨烯複合材料的優異的電性提升對氨氣感測的靈敏度及選擇性。複合材料在室溫下對氨氣具有很高的靈敏度,為聚苯胺的靈敏度高,複合材料在溫度效應的結果中顯示感測應答隨溫度而靈敏度減小,在流速效應方面感測應答則是與流速呈現正相關的結果,最後則比較複合材料的干擾測試及長時間穩定性作測試,結果顯示對這兩種氣體具備良好的選擇性及穩定性。 本研究結果顯示,聚苯胺-石墨烯奈米複合材料在室溫感測下對於氨氣感測具有很高的靈敏度及選擇性,並可應用於低濃度感測。

英文摘要

In this study, we aimed to develop a highly sensitive and selective room temperature ammonia sensors, and it was achieved by using a polyamine-reduced graphene oxide nanocomposite sensing layer. The sensing material comprised polyaniline and reduced graphene oxide because polyamine could sense ammonia at room temperature and reduced graphene oxide exhibited good electric properties. Compared with different materials, the response of composites at room temperature is was higher then polyaniline ammonia sensor . The ammonia sensing linear range form 200 ppm to 250 ppb. . Temperature effect and flow rate effects were also studied. Long-term stability of the nanocomposite ammonia sensor was evaluated. The experimental results suggested that this nanocomposite sensor exbilted high sensitivity, selectiviety, and stability for ammonia sensing at room temperature.

主题分类 理工學院 > 化學工程學系暨生物技術與化學工程研究所
生物農學 > 生物科學
工程學 > 化學工業
参考文献
  1. [1] M.B. Pushkarsky, M.E. Webber, C.K.N. Patel, Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy, Applied Physics B 77 (2003) 381-385.
    連結:
  2. [3] K. Xu, L. Zhu, A. Zhang, G. Jiang, H. Tang, A peculiar cyclic voltammetric behavior of polyaniline in acetonitrile and its application in ammonia vapor sensor, Journal of Electroanalytical Chemistry 608 (2007) 141-147.
    連結:
  3. [4] D. Zhang, C. Jiang, Y.e. Sun, Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film, Journal of Alloys and Compounds 698 (2017) 476-483.
    連結:
  4. [5] W. Liu, Y.-Y. Liu, J.-S. Do, J. Li, Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes, Applied Surface Science 390 (2016) 929-935.
    連結:
  5. [6] K.-P. Yoo, K.-H. Kwon, N.-K. Min, M.J. Lee, C.J. Lee, Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films, Sensors and Actuators B: Chemical 143 (2009) 333-340.
    連結:
  6. [7] Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite, Sensors and Actuators B: Chemical 178 (2013) 485-493.
    連結:
  7. [8] M. Eising, C.E. Cava, R.V. Salvatierra, A.J.G. Zarbin, L.S. Roman, Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor, Sensors and Actuators B: Chemical 245 (2017) 25-33.
    連結:
  8. [9] S. Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review, Journal of Science: Advanced Materials and Devices 1 (2016) 431-453.
    連結:
  9. [11] D. Chen, S. Lei, Y. Chen, A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms, Sensors 11 (2011).
    連結:
  10. [12] D.N. Huyen, N.T. Tung, N.D. Thien, L.H. Thanh, Effect of TiO(2) on the Gas Sensing Features of TiO(2)/PANi Nanocomposites, Sensors (Basel, Switzerland) 11 (2011) 1924-1931.
    連結:
  11. [13] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Flame-Spray-Made Undoped Zinc Oxide Films for Gas Sensing Applications, Sensors 10 (2010).
    連結:
  12. [14] H.E. Endres, W. Göttler, R. Hartinger, S. Drost, W. Hellmich, G. Müller, C.B.-v. Braunmühl, A. Krenkow, C. Perego, G. Sberveglieri, A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation, Sensors and Actuators B: Chemical 36 (1996) 353-357.
    連結:
  13. [15] X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. Siu-Wai Kong, H. Wei, Y. Zhang, Reduced graphene oxide-polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing, Journal of Materials Chemistry 22 (2012) 22488-22495.
    連結:
  14. [16] N.T.H. Xiao Lu Huang, Yan Yan Wang, Ya Fei Zhang, Ammonia Gas Sensor Based on Aniline Reduced Graphene Oxide, Advanced Materials Research 669 (2013).
    連結:
  15. [18] S.D. Bakrania, M.S. Wooldridge, The Effects of the Location of Au Additives on Combustion-generated SnO(2) Nanopowders for CO Gas Sensing, Sensors (Basel, Switzerland) 10 (2010) 7002-7017.
    連結:
  16. [19] 吳玉玫, 五苯環有機薄膜電晶體的氨氣感測器研究, 光電工程學系, 國立交通大學, 新竹市, 2010, pp. 50.
    連結:
  17. [21] 李勝利, 各類型偵測感應器簡介, 勞工安全衛生簡訊.
    連結:
  18. [22] 周瑞福, 氣體感測器原理與應用.
    連結:
  19. [23] 黃炳照, 固態電解質電化學氣體感測器, Chemistry (The Chinese Chem.Soc., Taipei) 59 (2001).
    連結:
  20. [24] 蕭育仁、林育德、李彥希、薛丁仁, 環境室內空氣品質監測用電子鼻:微型係體感測器, nano communication 22.
    連結:
  21. [25] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A Survey on Gas Sensing Technology, Sensors 12 (2012).
    連結:
  22. [27] H.K.a.B.S.S. Sang Kyu Lee, Graphene: an emerging material for biological tissue engineering, CARBONLETT 14 (2013).
    連結:
  23. [28] L. Ganhua, E.O. Leonidas, C. Junhong, Reduced graphene oxide for room-temperature gas sensors, Nanotechnology 20 (2009) 445502.
    連結:
  24. [29] H. Meng, W. Yang, K. Ding, L. Feng, Y. Guan, Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature, Journal of Materials Chemistry A 3 (2015) 1174-1181.
    連結:
  25. [30] R. Kumar, N. Kushwaha, J. Mittal, Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature, Sensors and Actuators B: Chemical 244 (2017) 243-251.
    連結:
  26. [31] I. Karaduman, E. Er, H. Çelikkan, N. Erk, S. Acar, Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles, Journal of Alloys and Compounds 722 (2017) 569-578.
    連結:
  27. [32] G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, R. Pasricha, ZnO decorated luminescent graphene as a potential gas sensor at room temperature, Carbon 50 (2012) 385-394.
    連結:
  28. [33] Z. Ye, H. Tai, R. Guo, Z. Yuan, C. Liu, Y. Su, Z. Chen, Y. Jiang, Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology, Applied Surface Science 419 (2017) 84-90.
    連結:
  29. [34] M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles, Solid-State Electronics 78 (2012) 159-165.
    連結:
  30. [36] A.G. Macdiarmid, Synthetic Metals 26 (1994).
    連結:
  31. [37] S. Srinives, T. Sarkar, A. Mulchandani, Nanothin Polyaniline Film for Highly Sensitive Chemiresistive Gas Sensing, Electroanalysis 25 (2013) 1439-1445.
    連結:
  32. [39] K. Crowley, A. Morrin, A. Hernandez, E. O’Malley, P.G. Whitten, G.G. Wallace, M.R. Smyth, A.J. Killard, Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles, Talanta 77 (2008) 710-717.
    連結:
  33. [40] A.L. Sharma, K. Kumar, A. Deep, Nanostructured polyaniline films on silicon for sensitive sensing of ammonia, Sensors and Actuators A: Physical 198 (2013) 107-112.
    連結:
  34. [43] S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection, Sensors and Actuators B: Chemical 221 (2015) 1523-1534.
    連結:
  35. [44] S.G. Pawar, M.A. Chougule, S. Sen, V.B. Patil, Development of nanostructured polyaniline–titanium dioxide gas sensors for ammonia recognition, Journal of Applied Polymer Science 125 (2012) 1418-1424.
    連結:
  36. [45] D.-J. Chen, S. Lei, R.-H. Wang, M. Pan, Y.-Q. Chen, Dielectrophoresis Carbon Nanotube and Conductive Polyaniline Nanofiber NH3 Gas Sensor, Chinese Journal of Analytical Chemistry 40 (2012) 145-149.
    連結:
  37. [46] H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film, Sensors and Actuators B: Chemical 125 (2007) 644-650.
    連結:
  38. [47] M. Das, D. Sarkar, One-pot synthesis of zinc oxide - polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor, Ceramics International 43 (2017) 11123-11131.
    連結:
  39. [48] S.B. Kulkarni, Y.H. Navale, S.T. Navale, N.S. Ramgir, A.K. Debnath, S.C. Gadkari, S.K. Gupta, D.K. Aswal, V.B. Patil, Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites, Organic Electronics 45 (2017) 65-73.
    連結:
  40. [49] H.T. Hien, H.T. Giang, N.V. Hieu, T. Trung, C.V. Tuan, Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors, Sensors and Actuators B: Chemical 249 (2017) 348-356.
    連結:
  41. [50] N.G. Deshpande, Y.G. Gudage, R. Sharma, J.C. Vyas, J.B. Kim, Y.P. Lee, Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications, Sensors and Actuators B: Chemical 138 (2009) 76-84.
    連結:
  42. [51] H. Tai, Y. Jiang, G. Xie, J. Yu, Preparation, Characterization and Comparative NH3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films, Journal of Materials Science & Technology 26 (2010) 605-613.
    連結:
  43. [52] Z. Pang, Z. Yang, Y. Chen, J. Zhang, Q. Wang, F. Huang, Q. Wei, A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects 494 (2016) 248-255.
    連結:
  44. [53] H. Tai, X. Xu, Z. Ye, C. Liu, G. Xie, Y. Jiang, P–P heterojunction sensor of self-assembled polyaniline nano-thin film/microstructure silicon array for NH3 detection, Chemical Physics Letters 621 (2015) 58-64.
    連結:
  45. [54] Z. Ye, Y. Jiang, H. Tai, N. Guo, G. Xie, Z. Yuan, The investigation of reduced graphene oxide@ SnO2–polyaniline composite thin films for ammonia detection at room temperature, Journal of Materials Science: Materials in Electronics 26 (2015) 833-841.
    連結:
  46. [55] F. Xu, G. Zheng, D. Wu, Y. Liang, Z. Li, R. Fu, Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler, Physical Chemistry Chemical Physics 12 (2010) 3270-3275.
    連結:
  47. [2] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases, Sensors and Actuators B: Chemical 160 (2011) 580-591.
  48. [10] 梁尚智, 溫度與溼度對氣體感測器之影響研究, 機械工程系所, 國立交通大學, 新竹市, 2004, pp. 116.
  49. [17] K. Jongwon, A. Gwanghoon, K. Gyusik, J.C. Kim, K. Hiesik, A study on NDIR-based CO2 sensor to apply remote air quality monitoring system, 2009 ICCAS-SICE, 2009, pp. 1683-1687.
  50. [20] M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, 13.08 - Developments in Semiconducting Oxide-Based Gas-Sensing Materials A2 - Hashmi, Saleem, in: G.F. Batalha, C.J.V. Tyne, B. Yilbas (Eds.), Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp. 205-219.
  51. [26] 蔡嬪嬪、曾明漢, 氣體感測器之簡介、應用及市場, 材料與社會 68 (1992) 50.
  52. [35] H.J. Letherby, Chem. Society 15 (1862).
  53. [38] T. Syrový, P. Kuberský, I. Sapurina, S. Pretl, P. Bober, L. Syrová, A. Hamáček, J. Stejskal, Gravure-printed ammonia sensor based on organic polyaniline colloids, Sensors and Actuators B: Chemical 225 (2016) 510-516.
  54. [41] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-Dependent Chemistry: Properties of Nanocrystals, Chemistry – A European Journal 8 (2002) 28-35.
  55. [42] 張哲瑋, 光催化法製備金奈米粒子的研究, 化學系, 東海大學, 台中市.