题名

利用連續流動型反應進行蜂巢狀圖案化氧化鋅側向磊晶成長之研究

并列篇名

Aqueous lateral exitaxial overgrowth of ZnO layers on honeycomb patterned buffer layers through a Continuous Flow Reactor

作者

楊舒涵

关键词

氧化鋅 ; 圖案化製程 ; 水熱法 ; 側向磊晶成長 ; 晶體缺陷 ; ZnO ; lateral epitaxial overgrowth ; hydrothermal growth ; crystal defects ; patterning process

期刊名称

義守大學材料科學與工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳厚光

内容语文

繁體中文

中文摘要

由於成長高品質氧化鋅磊晶膜層一直是致力想達成的目標。欲進一步降低磊晶膜層中差排密度,可以在製程中搭配圖案化製程進行側向磊晶成長(Lateral epitaxial overgrowth, LEO)。在前期研究透過 “線陣列”圖案化緩衝層陣列輔助,並搭配低溫水熱法製程在藍寶石基板上進行氧化鋅無遮罩式側向磊晶成長,並獲得低差排密度癒合氧化鋅膜層。然而磊晶膜層中仍存在著Wing tilt效應(約0.1o);為了改善wing tilt效應,在前期研究中提出六角形點陣列緩衝層,搭配“連續流動型反應器”,以進行長時間側向磊晶成長,可以獲得wing-tilt-free的磊晶膜層。 在本實驗中,將嘗試在藍寶石基板上製作另一種六重對稱圖案ZnAl2O4緩衝層結構─六角蜂巢圖案,再透過水熱法成長來進行ZnO側向磊晶成長。其中將嘗試採用兩種不同蜂巢圖案開口及圖案間距圖案尺寸來製作圖案ZnAl2O4緩衝層結構;此外,也分別嘗試利用傳統封閉式水熱法及連續流動型反應器來進行氧化鋅側向磊晶成長。其中透過傳統封閉式水熱法需要經常中斷晶體成長並更換水溶液來進行側向磊晶成長,由於經常中斷緣故,導致在側向成長最後階段,在蜂巢結構中心之未癒合孔洞上會發生氣泡會附著,進而導致蜂巢結構孔洞無法癒合,而且從橫截面觀察,可以發現在孔洞內為一個未癒合中空的孔穴。而透過連續流動反應槽來進行長時間氧化鋅側向磊晶成長,經過96小時以上成長,可以獲得完全連續癒合的膜層。證實可以透過採用連續流動反應槽來改善傳統水熱法更換溶液的問題。從XRC分析結果在蜂巢狀陣列上進行LEO成長之氧化鋅膜層幾乎完全沒有Wing tilt效應。薄膜整體平均差排密度為108 pitting/cm2。在癒合LEO膜層不同部位之顯微結構,分別透過穿透式電子顯微鏡及微區光激發螢光譜量測來進行探討。

英文摘要

In this study, the growth of high quality zinc oxide (ZnO) epitaxial layer is the major objective. To further reduce dislocation density, lateral epitaxial overgrowth (LEO) integrating with patterning processing had been proposed. In previous study, maskless LEO of ZnO on sapphire substrate in low temperature aqueous solution, through the assistance of line-patterned buffer layer, was reported. Although the dislocation density had been reduced, the effect of wing-tilt(a tilt angle of 0.1o) remained in the LEO ZnO layer. To suppress the wing-tilt effect, in our previous work, lateral epitaxial overgrowth of ZnO layer on hexagonal-patterned ZnAl2O4 buffer layers, with continuous flow reactors to conduct long duration epitaxial growth (>24h), can almost prevent the impact of wing-tilt effect. In this work, another pattern design with hexagonal symmetry, honeycomb pattern, was used to fabricated patterned ZnAl2O4 buffer layers on sapphire substrates. In this study, two different size of honeycomb patterned buffer layer was adopted to perform LEO. Aqueous lateral exitaxial overgrowth of ZnO layer was implemented on honeycomb patterned buffer layer through a conventional autoclave vessel or a continuous flow reactor, respectively. For conventional autoclave vessel, the crystal growth always needs to be interrupted to refresh the growth solution; meanwhile, the formation of the bubble on the center of honeycomb pattern obstruct the growth of ZnO in lateral directions; as a result, the fully coalesced ZnO layer cannot be achieved by the hydrothermal processing with conventional autoclave vessel. In contrast, for aqueous lateral exitaxial overgrowth of ZnO layer through the continuous flow reactor to implement long-duration hydrothermal growth, after LEO growth for 96h, the film was fully coalesced. It is evident that the LEO of ZnO through a continuous flow reactor can prevent the impact of gas bubbles. Based on X-ray diffraction rocking curve measurement, the wing-tilt was almost absent. The average dislocation density in the coalesced LEO layer was about 108 pitting/cm2. The microstructures and optical properties of coalesced ZnO film was implemented by transmission electron microscope and micro photoluminescence measurement.

主题分类 理工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. [1] G. Yuan, Z. Ye, L. Zhu, J. Huang, Q. Qian, and B. Zhao, "Gold schottky contacts on n-type ZnO thin films with an Al/Si(100) substrates," Journal of Crystal Growth, vol. 268, pp.169-173, 2004.
    連結:
  2. [2] Y. B. Zhang, S. Li, and G. K. L. Goh, "Lateral epitaxial overgrowth of ZnO films on a seed layer buffered MgAl2O4 substrate in water," in Third International Conference on Smart Materials and Nanotechnology in Engineering. vol. 8409, J. Leng, Y. BarCohen, I. Lee, and J. Lu, Eds., ed, 2012.
    連結:
  3. [3] W. C. T. Lee, P. Miller, E. D. Walsby, A. Markwitz, J. Kennedy, R. J. Reeves, et al., "Characterisation of ZnO thin films grown directly on sapphire by PAMBE," presented at the 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, Bribane, QLD; Australia, 2005.
    連結:
  4. [4] Y. K. Sun, D. Cherns, R. P. Doherty, J. L. Warren, and P. J. Heard, "Reduction of threading dislocations in ZnO/(0001) sapphire film heterostructure by epitaxial lateral overgrowth of nanorods," Journal of Applied Physics, vol. 104, p.023533, Jul 15 2008.
    連結:
  5. [5] H. L. Zhou, H. Pan, T. K. Chan, C. S. Ho, Y. P. Feng, S. J. Chua, et al., "Channeling contrast microscopy of epitaxial lateral overgrowth of ZnO/GaN films," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 260, pp 299-303, Jul 2007.
    連結:
  6. [6] H.-G. Chen, Y.-H. Shih, and M.-Y. Yu, "Patterned buffer layer promotes maskless lateral epitaxial overgrowth of low-dislocation-density ZnO films in aqueous solution at low temperature," Applied Physics Express, vol. 8, p.045502, 2015.
    連結:
  7. [7] Hou-GuangChe, Huei-SenWang.and Xuan-ChenLin "Lateral epitaxial overgrowth of ZnO layers on hexagonally patterned buffer layers in lowtemperature aqueous solution, Journal of Alloys and Compounds Volume 707,PP341-346. ,15 June 2017
    連結:
  8. [9] G. Alombert-Goget, H. Li, Y. Guyot, A. Brenier, and K. Lebbou, "Luminescence and coloration of undoped and Ti-doped sapphire crystals grown by Czochralski technique," Journal of Luminescence, vol. 169, pp. 516-519, 2016
    連結:
  9. [10] M. A. Jazi, T. Meisch, M. Klein, and F. Scholz, "Defect reduction in GaN regrown on hexagonal mask structure by facet assisted lateral overgrowth," Journal of Crystal Growth, vol. 429, pp.13-18, Nov 1 2015.
    連結:
  10. [11] M. A. Jazi, T. Meisch, M. Klein, and F. Scholz, "Defect reduction in GaN regrown on hexagonal mask structure by facet assisted lateral overgrowth," Journal of Crystal Growth, vol. 429, pp.13-18, Nov 1 2015.
    連結:
  11. [13] S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, et al., "Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst," J Am Chem Soc, vol. 130, pp.14958-9, Nov 12 2008.
    連結:
  12. [14] H.-G. Chen, C.-W. Wang, and Z.-F. Tu, "Hydrothermal epitaxial growth of ZnO films on sapphire substrates presenting epitaxial ZnAl2O4 buffer layers," Materials Chemistry and Physics, vol. 144, pp. 199-205, 2014.
    連結:
  13. [15] D. Cherns and Y. Sun, "Defect reduction by epitaxial lateral overgrowth of nanorods in ZnO/(0001) sapphire films," Applied Physics Letters, vol. 92, p.051909, Feb 2008.
    連結:
  14. [16] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, vol. 38, pp. 265-271, 2005.
    連結:
  15. [17] S. Einfeldt, A. M. Roskowski, E. A. Preble, and R. F. Davis, "Strain and crystallographic tilt in uncoalesced GaN layers grown by maskless pendeoepitaxy," Applied Physics Letters, vol. 80, pp.953-955, Feb 2002.
    連結:
  16. [18] P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, et al., "High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers," Applied Physics Letters, vol. 75, pp. 1706-1708, Sep 1999.
    連結:
  17. [19] Q. You, H. Cai, Z. Hu, P. Liang, S. Prucnal, S. Zhou, et al., "Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al–N codoping," Journal of Alloys and Compounds, vol. 644, pp.528-533, 2015.
    連結:
  18. [20] Hou-Guang Chen, Chi-Wei Wang, Zhi-Fan Tu, " Hydrothermal epitaxial growth of ZnO films on sapphire substrates presenting epitaxial ZnAl2O4 buffer layers," Materials Chemistry and Physics p.199-205 ,2014
    連結:
  19. [22] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, vol. 38, pp.265-271, 2005.
    連結:
  20. [24]Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, et al., "Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method," Journal of Nanomaterials, p.756401, 2014.
    連結:
  21. [25] K. Hiramatsu, "Epitaxial lateral overgrowth techniques used in group III nitride epitaxy," Journal of Physics-Condensed Matter, vol. 13, pp.6961-6975, Aug 2001
    連結:
  22. [26] X. Ni, U. Ozgur, Y. Fu, N. Biyikli, J. Xie, A. A. Baski, et al., "Defect reduction in (11(2)over-bar-0) a-plane GaN by two-stage epitaxial lateral overgrowth," Applied Physics Letters, vol. 89, Dec 2006.
    連結:
  23. [27] J. Wang, L. W. Guo, H. Q. Jia, Z. G. Xing, Y. Wang, J. F. Yan, et al., "Investigation of characteristics of laterally overgrown GaN on striped sapphire substrates patterned by wet chemical etching," Journal of Crystal Growth, vol. 290, pp.398-404, May 2006.
    連結:
  24. [28] S. P. Fillery and F. F. Lange, "Aqueous lateral epitaxy overgrowth of ZnO on (0001) GaN at 90 degrees C: Part I. Increasing the critical thickness," Thin Solid Films, vol. 518, pp. 6022-6029, Aug 2010.
    連結:
  25. [29] J. J. Richardson and F. F. Lange, "Controlling Low Temperature Aqueous Synthesis of ZnO. 2. A Novel Continuous Circulation Reactor," Crystal Growth & Design, vol. 9, pp. 2576-2581, 2009.
    連結:
  26. [30] M. Alimoradi Jazi , T. Meisch, M. Klein, F. Scholz, "Defect reduction in GaN regrown on hexagonal mask structure by facet assisted lateral overgrowth," Journal of Crystal Growth 429 ,pp.13–18,2015.
    連結:
  27. [31] H. Q Le,G. K. L. Goh andL –L Liew"Nanorod assisted lateral overgrowth of ZnO film in water at 90℃"CrystalComm Paper,2013
    連結:
  28. [32] J. M. Ashfaq, B. C. Hu, N. Zhou, J. Shaibo, C. Y. Ma, and Q. Y. Zhang, "Extraordinary near-band-edge photoluminescence in the highly epitaxial ZnO films deposited by PLD," Journal of Luminescence, vol. 178, pp. 192-195, 2016.
    連結:
  29. [8] T. Kuech, Handbook of Crystal Growth: Thin Films and Epitaxy: Elsevier Science, 2014.
  30. [12] R.-M. Ko, Y.-R. Lin, S.-J. Wang, S.-M. Su, Y.-C. Huang, and T.-H. Yu, "Epitaxial Growth of ZnO Films on Patterned c-Plane GaN Layer Using Hydrothermal Method," ECS Journal of Solid State Science and Technology, vol. 4, pp.N111-N116, January 1, 2015 2015.
  31. [21] R. Ayouchi, L. Bentes, C. Casteleiro, O. Conde, C.P. Marques, E. Alves , A.M.C.Moutinho,H.P.Marques,O.Teodoro,R.Schwarz, "Photosensitivity of nanocrystalline ZnO films grown by PLD," Applied Surface Science 255, 2009.
  32. [23]Yinzhen Wang, Shunquan Wang, Shengming Zhou , Jun Xu , Jiandong Ye , Shulin Gu , Rong Zhang , Qiushi Ren et al., " Effects of sapphire substrate annealing on ZnO epitaxial films grown by MOCVD ," Applied Surface Science 253 p1745–1747,2006
  33. [33] https://zh.wikipedia.org/wiki/%E5%88%86%E5%AD%90%E6%9D%9F%E5%A4%96%E5%BB%B6