题名

空氣濕度影響人造光源的實驗與模擬分析

并列篇名

Experiment and numerical simulation on artificial solar beam due to the effect of air humidity

作者

陳冠揚

关键词

太陽熱能 ; 濕度實驗 ; 太陽光模擬燈具 ; Solar thermal energy ; Humidity experiment ; Solar simulator

期刊名称

義守大學機械與自動化工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳建霖

内容语文

繁體中文

中文摘要

本研究旨在設計製造一太陽熱能實驗平台,可裝載濕度筒並控制其內部相對濕度之穩定,接著測量其溫度與輻照度;此外也利用菲涅爾透鏡匯聚光線產生較高的熱能,探討在不同相對濕度的影響下太陽光模擬燈具能量之變化。經實驗結果發現控制區域之相對濕度為影響溫度的重要因素,另外本研究也探討以數值漫射率參數模擬濕度程度的可行性。而濕度從 40%提升至 90%會降低模擬光源的能量,相對濕度 90%時,輻照度衰減率最高會達到3.96%、平均輻照度下降 34.6 W/m2,實驗與數值模擬的中心溫度偏差值,平均偏差值為2.92%,偏差值最低為相對濕度40%的2.01%,最高為相對濕度60%的4.36%。

英文摘要

In this study, the solar thermal experimental platform has been designed and manufactured. A humidity barrel can be mounted and the relative humidity inside can be controlled steadily and the temperature and illumination can be measured. In addition, higher thermal energy can be obtained by a Fresnel lens to study the efficiency of solar simulator under the influence of different relative humidity. It was found that the relative humidity of the controlled zone is an important factor that influence temperature. Moreover, the feasibility of numerical irradiance to represent humidity has been studied. As the humidity is increased from 40% to 90%, the efficiency of solar thermal energy will be reduced. When the relative humidity reach 90%, the irrdiance attenuation rate will be as high as 3.96% and the average irrdiance will decrease 34.6 W/m2 and center temperature deviated value of experiments and numerical simulations, the average deviated value is 2.92%, lowest deviated value is 2.01%, when the relative humidity at 40%, highest is 4.36% when the relative humidity at 60%.

主题分类 理工學院 > 機械與自動化工程學系
工程學 > 機械工程
参考文献
  1. 1.洪鵬翔,落塵影響太陽熱能效率的實驗與模擬分析,碩士論文,義守大學機械與自動化工程學系,台灣,2015。
    連結:
  2. 8.SolidWorks,2006原廠教育訓練手冊,知城數位科技股份有限公司,2006。
    連結:
  3. 14.J. Liu, H. M. Shang, Y. S. Chen, T. S. Wang, Development of an unstructured radiation model applicable for two dimensional planar, axisymmetric and 3-dimensional geometries, J. Quant. Spectrosc. Radiat. Transfer 66, 17–33, 2000.
    連結:
  4. 15.D. Joseph, M. El Hafi, R. Fournier, B. Cuenot, Comparison of three spatial differencing schemes in Discrete Ordinates Method using three-dimensional unstructured meshes, Int. J. Thermal Sci. 44(9), 851–864, 2005.
    連結:
  5. 16.F. M. White, Fluid Mechanics, McGraw-Hill, USA,2003。
    連結:
  6. 2.Introduction to Solar Radiation, http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx, 2014.
  7. 3.黃福坤,密閉空間中濕度與溫度的關係,學術研究討論論壇,國立臺灣師範大學物理學系,台灣,http://www.phy.ntnu.edu.tw/demolab/phpBB/viewtopic.php?topic=21745,2010。
  8. 4.Dew point, https://en.wikipedia.org/wiki/Dew_point, 2016.
  9. 5.交通部中央氣象局,台灣地區平均相對濕度與平均年日照長度, http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_rh.htm,2016。
  10. 6.黃俊宇,太陽能源技術運用於雲嘉南之可行性,碩士論文,中正大學應用地球物理研究所,台灣,2005。
  11. 7.王金印,多區域HCPV系統資料整合與分析暨環境因素之影響評估,行政院原子能委員會,萬能科技大學,台灣,2013。
  12. 9.ANSYS MESHING, Documentation, ANSYS Inc, 2010.
  13. 10.ANSYS FLUENT 13, Documentation, ANSYS Inc, 2010.
  14. 11.S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Pub. Co., New York, 1980.
  15. 12.M. N. Özışık, Radiative Transfer & Interactions With Conduction & Convection, Werbel & Peck, USA, 1985.
  16. 13.B. E. Launder, D. B. Spalding, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, pp. 269-289, 1990.
  17. 17.黃文雄,太陽能之應用及理論,協志工業叢書出版股份有限公司,台灣,1978。
  18. 18.朱光馨,聚熱式太陽能發電系統與應用,猶他大學化工暨燃料工程博士,台灣,2013。
  19. 19.J. L. Chen, P. S. Hong, Study for the Solar Thermal Collector due to Falling Dust by Numerical Simulation and Experiment, Dept. of Mechanical and Automation Engineering, I-Shou University, Taiwan, 2016.K. J. Ritchey, Panoramic image based virtual reality/telepresence audio-visual system and method, U.S. Patent No. 5,495,576. 27, 1996.
  20. 20.J. D. Keast, J. F. Buford, Digital video panoramic image capture and display system, U.S. Patent No. 5,721,585. 24, 1998。
  21. 21.J. E. Davis, M. N. Todd, M. Ruda, T. W. Stuhlinger, K. R. Castle,Optics assembly for observing a panoramic scene, U.S. Patent No. 5,627,675. 6, 1997.
  22. 22.John A. Agostinelli, D. Kessler, Autostereoscopic optical apparatus using a scanned linear image source, U.S. Patent No. 6,511,182. 28, 2003.