题名

用試題反應理論估計運動項目的成績表現排名-用定錨法處理運動項目循環賽排名估計的失序-

并列篇名

Assessment of Ranking of Performance in Sports form Item Response Theory Ⅱ: Adjustment Disorder of Round Matches Rankings for using Anchor Method

DOI

10.6773/JRMS.200212.0101

作者

姚漢禱(Han-Dau Yau)

关键词

定錨 ; 試題反應理論 ; 循環賽 ; 失序 ; Rasch模式 ; anchor ; item response theory ; round matches ; disorder ; Rasch model

期刊名称

測驗統計年刊

卷期/出版年月

10期(2002 / 12 / 01)

页次

101 - 120

内容语文

繁體中文

中文摘要

本研究的目的是用定錨法處理運動項目循環賽排名估計的失序。Linacre指出:「FACETS電腦程式(試題反應理論分析質的觀察值)可將原始測量的順序量尺經過校準後,全部都是相同的線性構造,可以推論至一般的等距量尺。」姚漢禱研究用試題反應理論來估計運動項目的成績表現排名,得到結論:「試題反應理論將排名(成績表現)順序資料轉換(對數轉換)為近似等距數線(連續性數線)的量尺,它可以提供更多瘕臉訊息和更精確的成績表現。」但是,當積分相同時,估計潛能和比賽規則」判定名次不一致,產生失序現象。本研究以桌球循環賽相同積分為研究對象,運用FACETS電腦程式估計受試者能力。本研究的結論是定貓法依規則判定的名次,將順序量尺的排名,完成精確的估計。

英文摘要

The purpose of the study was to adjust the disorder of Round Matches rankings for using anchor method. Linacre (1997) pointed out: the FACETS (Rasch measurement computer program) analyzes qualitative observations and it estimates a quantitative measure. The measures for the elements obtained from one analysis are all in the same linear frame of reference on one common interval scale. Yau (2001) assessment of ranking of performance in sports form item response theory. The conclusion of this study was that the item response theory analysis computer program convert (a logistic transformation) ranking of ordinal data (performance) into an approximately equal-interval number line (linear continuum or scale representing the variable). It provided more than even test information and precision estimation in the scale of performance. When the equivalent of total scores, that had loss agreement both the estimation ability and the rank from rules. The person abilities were disorder. The subjects were the equivalent of total scores with round matches in table tennis. We were using the computer program FACETS to estimate person abilities. The conclusion of this study was that the anchor method analysis ranking of ordinal data into a precision estimation by the rank from rules.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. American Educational Research Association,American Psychological Association,National Council on Measurement in Education(1999).The Standards for Educational and Psychological Testing.Washington, DC:American Educational Research Association.
  2. Bode, R.(2000).Paired Comparisons for Forced Choice.Rasch Measurement Transactions,14(3),769.
  3. Bond, T.C.,Fox, C.M(2001).Applying The Rasch Model: Fundamental Measurement in the Human Sciences.Mahwah, NJ:Lawrence Erlbaum Associates.
  4. Bradley, R.A.,Terry, ME.(1952).Rank analysis of incomplete block designs I: The method of paired comparisons.Biometrika,39,324-345.
  5. Davidson, R.R.,Beaver, R.J.(1977).On extending the Bradley-Terry model to incorporate within-pair order effects.Biometrics,33,693-702.
  6. Fischer, G.H.,G.H. Fischer(Eds.),I.W. Molenaar(Eds.)(1995).Rasch model: Foundations, recent developments, and applications.New York:Springer-Verlag.
  7. Linacre J.M.(1997).Paired Comparisons with Standard Rasch Software.Rasch Measurement Transactions,11(3),584-585.
  8. Linacre J.M.(1999).Paired comparison measurement with extreme scores.Rasch Measurement Transactions,12(3),646-647.
  9. Linacre J.M.(2001).Paired Comparisons for Measuring Team Performance.Rasch Measurement Transactions,15(1),812.
  10. Linacre, J.M.(2001).FACETS computer program.Facets for Windows Version,36(2)
  11. Linacre, J.M.(1995).Paired comparisons with ties: Bradley-Terry and Rasch.Rasch Measurement Transactions,9(2),425.
  12. Matthews, J.N.S.,Morris, K.P.(1995).An application of Bradley-Terry- type models to the measurement of pain.Applied Statistics,44(2),243-255.
  13. Thurstone, L.L.(1927).The method of paired comparisons for social values.Journal of Abnormal and Social Psychology,21,384-400.
  14. Wright, B.D.,Masters, G.N.(1982).Rating scale analysis: Rasch measurement.Chicago:Mesa Press.
  15. 姚漢禱(2001)。姚漢禱2001無體育行政講義。國立體育學院。
  16. 姚漢禱(2001)。國科會專題研究計畫成果報告國科會專題研究計畫成果報告,未出版
  17. 姚漢禱(2002)。國科會專題研究計畫成果報告國科會專題研究計畫成果報告,未出版
被引用次数
  1. 陸雲鳳,紀世清,姚漢禱(2009)。中華台北最佳女子桌球雙打技術分析。休閒運動健康評論,1(1),44-60。
  2. 姚漢禱(2004)。發展多層面階層Rasch模式分析淘汰賽的排名—以2002 FIFA世界盃決賽爲例—。測驗統計年刊,12(下),141-154。
  3. 姚漢禱(2004)。利用線性Logistic Rasch模式估計排名賽的成績表現—以34屆世界盃棒球賽為例。國立體育學院論叢,15(1),149-158。
  4. 姚漢禱(2004)。以Rasch測量有效的等化分組循環賽的成績表現。體育學報,37,275-287。
  5. 游鳳芸,陳建彰,姚漢禱(2020)。1980~2020年Rasch測量在體育運動之發展和應用。交大體育學刊,16,69-80。
  6. 張淑華,林巾凱,吳慧珉(2021)。納入評分者嚴苛度之幼兒姿勢動作分析。測驗學刊,68(4),263-285。