题名 |
用試題反應理論估計運動項目的成績表現排名-用定錨法處理運動項目循環賽排名估計的失序- |
并列篇名 |
Assessment of Ranking of Performance in Sports form Item Response Theory Ⅱ: Adjustment Disorder of Round Matches Rankings for using Anchor Method |
DOI |
10.6773/JRMS.200212.0101 |
作者 |
姚漢禱(Han-Dau Yau) |
关键词 |
定錨 ; 試題反應理論 ; 循環賽 ; 失序 ; Rasch模式 ; anchor ; item response theory ; round matches ; disorder ; Rasch model |
期刊名称 |
測驗統計年刊 |
卷期/出版年月 |
10期(2002 / 12 / 01) |
页次 |
101 - 120 |
内容语文 |
繁體中文 |
中文摘要 |
本研究的目的是用定錨法處理運動項目循環賽排名估計的失序。Linacre指出:「FACETS電腦程式(試題反應理論分析質的觀察值)可將原始測量的順序量尺經過校準後,全部都是相同的線性構造,可以推論至一般的等距量尺。」姚漢禱研究用試題反應理論來估計運動項目的成績表現排名,得到結論:「試題反應理論將排名(成績表現)順序資料轉換(對數轉換)為近似等距數線(連續性數線)的量尺,它可以提供更多瘕臉訊息和更精確的成績表現。」但是,當積分相同時,估計潛能和比賽規則」判定名次不一致,產生失序現象。本研究以桌球循環賽相同積分為研究對象,運用FACETS電腦程式估計受試者能力。本研究的結論是定貓法依規則判定的名次,將順序量尺的排名,完成精確的估計。 |
英文摘要 |
The purpose of the study was to adjust the disorder of Round Matches rankings for using anchor method. Linacre (1997) pointed out: the FACETS (Rasch measurement computer program) analyzes qualitative observations and it estimates a quantitative measure. The measures for the elements obtained from one analysis are all in the same linear frame of reference on one common interval scale. Yau (2001) assessment of ranking of performance in sports form item response theory. The conclusion of this study was that the item response theory analysis computer program convert (a logistic transformation) ranking of ordinal data (performance) into an approximately equal-interval number line (linear continuum or scale representing the variable). It provided more than even test information and precision estimation in the scale of performance. When the equivalent of total scores, that had loss agreement both the estimation ability and the rank from rules. The person abilities were disorder. The subjects were the equivalent of total scores with round matches in table tennis. We were using the computer program FACETS to estimate person abilities. The conclusion of this study was that the anchor method analysis ranking of ordinal data into a precision estimation by the rank from rules. |
主题分类 |
基礎與應用科學 >
統計 社會科學 > 教育學 |
参考文献 |
|
被引用次数 |
|