题名

廣義階層線性模式在強制汽車責任保險理賠資料之應用

并列篇名

Applications of Hierarchical Generalized Linear Models on Compulsory Automobile Liability Insurance Claims Data

DOI

10.6773/JRMS.200212.0173

作者

楊志強(Chih-Chiang Yang)

关键词

廣義線性階層模式 ; 準近似函式 ; 吉氏取樣 ; 縱貫研究 ; 汽車保險理賠 ; 從人因素 ; Hierarchical Generalized Linear Model ; Quasi-likelihood ; Gibbs Sampling ; Longitudinal Study ; Automobile Insurance Claims ; Human Factor

期刊名称

測驗統計年刊

卷期/出版年月

10期(2002 / 12 / 01)

页次

173 - 195

内容语文

繁體中文

中文摘要

本研究以廣義階層線性模式分析汽車保險汽車駕駛人於長期縱貫研究下的汽車理賠情形,除了在汽車保險汽車駕駛人出險情形的實質發現之外,主要在於廣義線性階層模式在研究方法學的意義及使用方法,並進一步比較幾個估算方法之優劣及異同。 本研究以民國八十六至八十九年間中華民國強制汽車責任保險汽車駕駛人出險資料為例,這筆資料為特殊變異波以松分配、異質性與同一樣本相依性的特質,並不適合以一般線性迴歸模式分析。因此本研究建議使用以率近似函式及吉氏取樣來估算的廣義階層線性模式,這些方法具有較彈性的模式假設,適合汽車保險汽車駕駛人出險次數的特性。 除了方法學上的研究示範外,本研究並有不同模式間的比較,而且討論了汽車保險理賠與從人因素的關係。

英文摘要

This paper shows both substantive values of applying hierarchical generalized linear model (HGLM) to analyze automobile insurance claims data of a longitudinal study and methodological comparisons of different estimation methods for estimating HGLM. The Taiwan automobile insurance claims dataset, 1997-2000 has the specific extra-Poisson variation, heteroscedasticity, and within-subject dependence characteristics that make it difficult to be analyzed by regular statistical procedures. To investigate appropriately the relationship between the background variables of automobile drivers and the frequency of automobile insurance claims, the researcher used HGLM models by employing quasi-likelihood and Bayesian inference by Gibbs sampling estimation approaches. Both estimation methods that are capable with various model assumptions provide important alternatives to ordinary least square regression. Results of these analyses verify that the automobile driver's sex, age and marital status play significant roles in the frequency of automobile car insurance claims. Methodological differences between the estimation methods are also outlined.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. Breslow, N.E.,Clayton, D.G.(1993).Approximate inference in generalized linear mixed models.Journal of the American Statistical Association,88,9-25.
  2. Bryk, A.S.,Raudenbush, S.W.(1992).Hierarchical Linear Models: Applications and Data Analysis Methods.CA, Newbury Park:SAGE publications, Inc..
  3. Bryk, A.S.,Raudenbush, S.W.,Congdon, R.T.(1996).Hierarchical Linear Model.Chicago:Scientific Software International, Inc..
  4. Cripe, F.F.,Hunter, R.(1992).Automobile classification systems: age, sex, marital status, and territory are they unfairly discriminatory?.The Actuarial Review,19(3)
  5. Gelman, A.,Rubin, D.B.(1992).Inference from iterative simulation using multiple sequences.Statistical Science,7,457-472.
  6. Geweke, J.,J.M. Bernardo(Eds.),J.O. Berger(Eds.),A.P. Dawid(Eds.),A.F.M. Smiths(Eds.)(1992).Bayesian Statistics 4.Oxford:Oxford University Press.
  7. Goldstein, H.(1991).Nonlinear multilevel models with an application to discrete response data.Biometrika,78,45-51.
  8. Hedeker, D.,Gibbons, R.(1994).A random-effects ordinal regression model for multilevel analysis.Biometrics,50,933-944.
  9. Kass, R.E.,Carlin, B.P.,Gelman, A.,Neal, R.M.(1998).Markov chain Monte Carlo in practice: a roundtable discussion.The American Statistician,52,93-100.
  10. Liang, K.Y.,Zeger, S.(1986).Longitudinal data analysis using generalized linear models.Biometrika,73,13-22.
  11. Lindley, D.V.,Smith, A.F.M.(1972).Bayes estimates for the linear model.Journal of the Royal Statistical Society,34,1-41.
  12. McCullagh, P.,Nelder, J.(1989).Generalized Linear Models.London:Chapman and Hall.
  13. Morris, C.N.(1983).Parametric empirical Bayes inference: theory and applications.Journal of the American Statistical Association,78,47-65.
  14. Muthén, B.,Brown, C.H.,Masyn, K.,Jo, B.,Khoo, S.T.,Yang, C.C.,Wang, C.P.,Kellam, S.,Carlin, J.,Liao, J.(2002).General growth mixture modeling for randomized preventive interventions.Accepted for publication in Biostatistics.
  15. Muthén, B.,Muthén, L.(2000).Integrating person-centered and variable- centered analyses: Growth mixture modeling with latent trajectory classes.Alcoholism: Clinical and Experimental Research,24,882-891.
  16. Nelder, J.A.,Wedderburn, R.W.M.(1972).Generalized linear models.Journal of the Royal Statistical Society,135,370-384.
  17. Raftery, A.E.,Lewis, S.M.,J.M. Bernardo(Eds.),J.O. Berger(Eds.),A.P. Dawid(Eds.),A.F.M. Smiths(Eds.)(1992).Bayesian Statistics.Oxford:Oxford University Press.
  18. Raudenbush, S.W.,Bryk, A.S.(1986).A hierarchical model for studying school effects.Sociology of Education,59,1-17.
  19. Rosenberg, M.,Alexander, S.A.(1992).Rate classification reform in New Jersey.Best`s Review.
  20. Spiegeihalter, D.,Thomas, A.,Best, N.,Gilks, W.(1995).Bayesian Inference Using Gibbs Sampling (BUGS), computer software manual, MRC Biostatistics Unit, IPH.Cambridge:
  21. Spiegelhalter, D.,Thomas, A.,Best, N.,Gilks, W.(1995).BUGS Examples, computer software manual, MRC Biostatistics Unit, IPH.Cambridge:
  22. Stiratelli, R.,Laird, N.,Ware, J.(1984).Random effects models for serial observations with binary response.Biometrics,40,961-971.
  23. Thall, F.P.(1988).Mixed Poisson likelihood regression models for longitudinal interval count data.Biometrics,44,197-209.
  24. Thall, F.P.,Vail, C.S.(1990).Some covariance models for longitudinal count data with over dispersion.Biometrics,46,657-671.
  25. The Ohio State University(1994).National Longitudinal Surveys.Columbus, Ohio:Center for Human Resource Research.
  26. Wang, P.,Puterman, M.L.,Cockburn, I.,Le, N.(1996).Mixed Poisson regression models with covariate dependent rates.Biometrics,52,381-400.
  27. Wong, G.,Mason, W.(1985).The hierarchical logistic regression model for multilevel analysis.Journal of the American Statistical Association,80,513-524.
  28. Yang, C.C.(2001).Finite Mixture of Longitudinal Chinese Linguistic Latent Growth Trajectories.
  29. Yang, C.C.,Yang, C.C.(1999).The Application of Bayesian Extended Latent Class Analyses in Psychometrics (in Chinese).Psychological Testing,46,73-84.
  30. Yang, C.C,Muthén, B.,Yang, C.C.(1999).Finite Mixture Multivariate Generalized Linear Models Using Gibbs Sampling and E-M Algorithm.Proceedings of the National Science Council Part A: Physical Science and Engineering,23,695-702.
  31. Zeger, S.L.,Liang, K.Y.(1986).Longitudinal data analysis for discrete and continuous outcomes.Biometrics,42,121-130.
  32. 林進田(1996)。車險從人因素新加減費系統之評估。保險專刊,43,87-109。
  33. 林麗芬(1996)。我國汽車保險地區費率之方析。中國統計學報,34(4),372-397。
  34. 孫元璋(1997)。碩士論文(碩士論文)。逢甲大學統計與精算研究所。
  35. 中華民國八十六年汽車保險業務統計年報
  36. 中華民國八十八年汽車保險業務統計年報
  37. 中華民國八十九年汽車保險業務統計年報
  38. 中華民國八十七年汽車保險業務統計年報
  39. 張金裕、李美杏(1995)。汽車保險費率分類模式之較佳估計。保險專刊,42,99-111。
  40. 陳強、梁正德、謝良瑾(1993)。汽車保險費率釐定從人因素之探討。保險專刊,30,97-113。
  41. 陳繼堯(1999)。汽車保險。台北市:智勝文化。
  42. 陳繼堯(1996)。汽車保險理賠論。台北市:三民書局。
  43. 劉純之(1997)。汽車保險費率與獎懲制度。保險專刊,49,60-83。
  44. 蕭銘宏(1996)。碩士論文(碩士論文)。逢甲大學統計與精算研究所。
  45. 賴曜賢(1999)。實用財產及責任保險費訂定原理。台北市:三民書局。