题名 |
A Simple Scheme of Generating Bipartite Graphs with Fault-tolerant Hamiltonian Properties |
并列篇名 |
具容錯-漢米爾頓性質之二部圖的簡單建構方法 |
DOI |
10.6358/JCYU.200503.0011 |
作者 |
高欣欣(Shin-Shin Kao);陳育志(Yu-Chih Chen) |
关键词 |
二部圖 ; 漢米爾頓性質的 ; 漢米爾頓連通性 ; bipartite ; hamiltonian ; hamiltonian laceable |
期刊名称 |
中原學報 |
卷期/出版年月 |
33卷1期(2005 / 03 / 01) |
页次 |
11 - 19 |
内容语文 |
英文 |
中文摘要 |
在這篇文章中,我們介紹一個産生有良好性質二的部圖的簡單方法。考慮一個bipartite圖形G,令W和B爲它的二個分部(partition),假如它有1-edge hamiltonian,1(下標 p)-hamiltonian和hamiltonian laceable的性質,我們就稱它爲一個「良好的」二部圖。更明確的說,令F爲一個包含任意一個邊的集合,或F是一個包含一對點的集合{v1,v2|v1∈W, v2∈B},若稱G是「良好的」,則G-F必保有漢米爾頓性質;而且在G中給定任意二點u∈W和v∈B,必存在從u到v的漢米爾頓路逕。我們稱此處所介紹的方法爲「邊代換」。兄弟樹[4],BT(n),n≥1就是一可由邊代換産生之良好的二部圖的例子。 |
英文摘要 |
In this paper, we introduce a simple scheme of generating ”good” bipartite graphs. A bipartite graph G with bipartition W and B is a good graph if it is 1-edge hamiltonian, 1(subscript p)-hamiltonian and hamiltonian laceable. More specifically, G is good if G-F remains hamiltonian where F consists of an edge or a pair of vertices {v1, v2|v1∈W, v2∈B}, and if there exists a hamiltonian path between u and v for any u∈W, v∈B. This scheme is called ”edge replacement”. Simple examples of good bipartite graphs, as well as the family of brother trees BT(n) with n≥1[4], are obtained as an application of edge replacement. |
主题分类 |
人文學 >
人文學綜合 工程學 > 工程學綜合 社會科學 > 社會科學綜合 |