题名

The Nonparametric MLE As an Inverse-Probability-of Truncation Weighted Average

并列篇名

非參數最大估計值表示成以截取機率爲權數之平均值

DOI

10.29724/TMR.200207.0002

作者

沈葆聖(Pao-Sheng Shen)

关键词

Product-Limit估計值 ; 隨機截取 ; Product-Limit Estimator ; Random Truncation

期刊名称

東海管理評論

卷期/出版年月

4卷1期(2002 / 07 / 01)

页次

17 - 25

内容语文

英文

中文摘要

對於隨機設限資料,Satten和Datta (2001)證明Kaplan-Meier估計值可以表示成以設限時間機率分配為權數的加權平均值。本文中,我們證明截取資料下,Lynden-Bell(1971)所提出的product-limit估計值亦可表示成以截取時間機率分配為權數的加權平均值。

英文摘要

For randomly censored data, Satten and Datta (2001) showed that the Kaplan-Meier estimator can be expressed as an inverse-probability-of censoring weighted estimator. In this article, it is shown that the truncation product-limit estimate, first introduced by Lynden-Bell(1971), can also be expressed as an inverse-probability-of truncation weighted average, where the weights are related to the distribution function of truncation variables.

主题分类 社會科學 > 管理學
参考文献
  1. He, S.,G. L. Yang(1998).Estimation of the Truncation Probability in the Random Truncation Model.Ann. Statist.,26,1011-1027.
  2. Kalbfleisch, J.,R. Prentice(1980).The Statistical Analysis of Failure Time Data.New York:Wiley.
  3. Lynden-Bell, D.(1971).A Method of Allowing for Known Observational Selection in Small Samples Applied to 3CR Quasars.Mon. Not. R. Astr. Soc.,155,95-118.
  4. Robins, J. M.,A. Rotnitzky(1993).Proceedings of the American Statistical Association-Biopharmaceutical Section.Alexanndria, VA:ASA..
  5. Robins, J. M.,A. Rotnitzky,D. Finkelstein(2000).Correcting for Non-Compliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank tests.Biometrices,56,779-788.
  6. Robins, J. M.,A. Rotnitzky,N. Jewell,K. Dietz,V. Farewell(eds.)(1992).AIDS Epidemiology-Methodological Issues.Boston:Brikhauser.
  7. Statten, G. A.,S. Datta(2001).The Kaplan-Meier Estimator as an Inverse-Probability-of Censoring Weighted Average.Amer. Statist. Ass.,55,207-210.
  8. Vardi, Y.(1982).Empirical Distribution in Selection Bias Models.Ann. Statist.,10,616-620.
  9. Wang, M.-C.(1987).Product-Limit Estimates: a Generalized Maximum Likelihood Study.Communi. in Statist.,6,3117-3132.
  10. Wang, M.-C.(1989).A Semiparametric Model for Randomly Truncated Data.J. Amer. Statist. Ass.,84,742-748.
  11. Wang, M.-C.,Jewell, N. P.,W.-Y. Tsai(1986).Asymptotic Properties of the Product-Limit Estimate under Random Truncation.Ann. Statist.,14,1597-1605.
  12. Wang, M.-C.,Jewell, N. P.,W.-Y. Tsai(1991).Nonparametric Estimation from Cross-Sectional Survival Data.J. Amer. Statist. Ass.,86,130-143.
  13. Woodroofe, M.(1985).Estimating a Distribution Function with Truncated Data.Ann. Statist.,13,163-167.