题名

「分數詞」之解題活動類型-一個國小四年級兒童之個案研究

并列篇名

Meaning of Fractional Number Words: A Case Study of Fourth Graders

DOI

10.7038/BREE.200112_(9).0015

作者

李端明(Duan-ming Li)

关键词

分數詞 ; 根本建構主義 ; 基模論 ; 教學晤談法 ; fractional number words ; radical constructism ; scheme theory ; teaching interview

期刊名称

國民教育研究集刊

卷期/出版年月

9期(2001 / 12 / 01)

页次

277 - 291+293

内容语文

繁體中文

中文摘要

本研究以根本建構主義與基模論為理論基礎,以教學晤談法進行資料收集,根據訪談的影帶轉譯和編輯成訪談原案,再依據訪談原案分析國小四年級參與者對於分數詞的解題活動類型。依據訪談原案分析的結果,本研究假設參與者的分數概念是位於加法性過渡至巢狀分數的階段。其解題活動類型具有下面性質:一、以分數詞表示兩量的並置關係。二、子分割運思。三、確定分數詞的算子意義。四、單向的部份-全體關係。五、缺乏雙向的部份-全體關係。六、缺乏共測單位與分數的密度性。

英文摘要

The study was based on the radical constructism as well as piagetian scheme theory, a four-grader was selected to collect her problem activities relating to fractional number words via teaching interview. According to the analysis on the performance of student, she was hypothesized as one instance who had the concept of additive fractional, when she used fractional number words, which has the following properties: (a) Fractional number words were used to denote a juxtaposed relationship between two quantities. (b) Subdivision operations have attained reversible level. (c) Fractional number words were used to denote meaning of operators. (d) The part-whole relationships among units of quantity is uni-directional, from part to whole. (e) The bi-directional part-whole relationship among units of quantities were not yet achieved. (f) A lack of construction on commeasure units as well as of the density meaning of fractional number words was observed.

主题分类 社會科學 > 教育學
参考文献
  1. Euclid (1926). The thirteen books of Euclid's Elements. T. L. Heaeh trans. and ed. Cambridge, England: The University Press
  2. Benseler, F.(Ed.),Hejl, P. M.(Ed.),Kock, W. K.(Ed.)(1980).Autopoiesis, comunication and society.New York:Campus.
  3. Davis, R. B.(Ed.),Maher, C. A.(Ed.),Noddings, N.(Ed.)(1990).Constructivist views on the teaching and learning of studies in Mathematics.Reston, VA:NCTM.
  4. Duglas, A. G.(Ed.)(1992).Handbook of research on mathematics teaching and learning.New York:Macmillan Publishing Company.
  5. Freudenthal, H.(1983).Didactical phenomenology of mathematical structures.Dordecht, Holland:D. Reidel Publishing Company.
  6. Husen, T.(Ed.),Postlethwaite, N.(Ed.)(1989).The international encyclopedia of education.New York:Pergamon Press.
  7. Kieren, T. K.,Pirie, E. B.(1991).Recursion and the mathematical experience.Epistemological foundations of mathematical experience
  8. Lesh, R.,Behr, M.,Post, T.(1987).Rational number relations and proportions.Problems of representation in the teaching and learning of mathematics,Hillsdnle. N.J.:
  9. Lindquist, M. M.(Ed.)(1989).Result from the fourth mathematics assessment of the national assessment of educational progress.Reston VA:N.C.M..
  10. Nik Pa, N.A.(1987).The University of Georgia.
  11. Ning, T. C.(1992).Athens, GA,The University of Georgia.
  12. Piaget, J.(1970).Genetic epistemology.Columbia:University Press.
  13. Piaget, J.(1965).The child's conception of number.New York:W. W. Norton.
  14. Piaget, J.,Inhelder, B.,Szeminska, A.(1960).The child's conception of geometry.New York:Basic Book.
  15. Steffe, L. P.,von Glasersfeld, E.,Richards, J.,Cobb, P.(1983).Children's counting types: Philosophy, theory, and application.New York:Praeger Scientific.
  16. Suydam, M.(Ed.)(1978).Development computational skill.Reston VA:N.C.T.M..
  17. Von Glasersfeld(Ed.)(1991).Radical constructivist in education.Netherland:Kluwer Academic Publishers.
  18. von Glasersfeld, E.(1987).Learning as a constructive activity.Problems of representation in the teaching and learning of mathematics,Hillsdale, NJ:
  19. 伍振鷟(1989)。教育哲學。台北:師大書苑。
  20. 朱則剛(1994)。教育工學的發展與派典演化。台北:師大書苑。
  21. 杜聲鋒(1988)。皮亞傑及其思想。台北:遠流出版社。
  22. 甯自強(1995)。五個區分對數與計算教材設計的影響。八十四年師院教授座談會
  23. 甯自強(1993)。分數的啟蒙~量的子分割活動的引入。教師之友,34(1),27-34。
  24. 甯自強(1994)。行政院國家科學委員會研究計畫報告行政院國家科學委員會研究計畫報告,行政院國家科學委員會。
  25. 甯自強(1992)。兒童的「整數詞」意義。第八屆科學教育年會,高雄市:
  26. 甯自強(1993)。經驗、察覺、及瞭解在課程中的意義~由根本建構主義的觀點來看。國小數理科教育學術研討會,台東市:
  27. 甯自強(1993)。行政院國家科學委員會研究計畫報告行政院國家科學委員會研究計畫報告,行政院國家科學委員會。
  28. 甯自強(1992)。經濟計數的活動~高階單位「十」的首度引入。教師之友,33(5),47-51。