题名

平面圖形複雜度與面積錯視之關聯性研究-以不規則多邊形為例

并列篇名

The Association of Complexity of Figures and Dimensional Visual Illusion-A Study of Irregular Polygons

DOI

10.6793/JNTCA.200510.0004

作者

楊清田(Ching-Tien Yang);魏碩廷(Shuo-Ting Wei)

关键词

面積錯視 ; 複雜度 ; 不規則形 ; Dimensional Visual illusion ; Complexity ; Irregular polygon

期刊名称

藝術學報

卷期/出版年月

77期(2005 / 10 / 01)

页次

13 - 23

内容语文

繁體中文

中文摘要

本研究旨在探索不規則多邊形的複雜度與面積錯視之間的關係。過去研究中,多探討規則幾何圖形之面積錯視,對不規則圖形的面積錯視較少論及。30名大學生參與本研究,每位受試者必須進行兩次測驗,第一次實驗前僅告知測驗流程及方法,第二次實驗則再告知誘因,使其在第二次的實驗中能更用心調整。受試者在給定的基準圖形旁,逐次調整另外五個不同複雜度的不規則圖形,使其大小看起來與基準圖形相同。複雜度之計算採用D=P/A之公式,其中D為複雜度、P為周長、A為面積。結果發現,誘因與性別的因素對於圖形面積的誤差值影響皆不顯著,顯示一般人的面積錯視具有普遍性;圖形的複雜度與誤差值呈現高度相關,顯示圖形越複雜,越不易判斷準確。在過大視、過小視方面,兩次實驗的結果大多偏向同一捆傾向;圖形複雜度越大,越容易呈現過大視的現象。藉由複雜度的界定與不規則面積之算法,提供在形態與面積錯視研究上的參考。

英文摘要

The purpose of this study is to explore the relationship between the value of complexity of irregular polygon and the dimensional visual illusion. Many results of similar studies only mentioned the dimensional visual illusion of geometric figures, but rarely mentioned it of irregular figures. 30 college students joined this research. Each person had to do twice tests. At the first, they were informed the method of experiment only. Second, they were informed inducement in addition to the method of experiment, so that they could concentrate on the second test. In each test, each person had to adjust 5 irregular polygons one by one, which have different values of complexity, beside the standard figure. The function of value of complexity is 'D=P/A', where D is the value of complexity, P is the perimeter, and A is the area of a polygon. According to the result of experiment, factors of inducement and sex both didn't influence the errors between the areas of the standard figure and each irregular polygon. The values of complexity and errors are highly correlative. It means the higher value of complexity of a figure, the larger error we'll make. As to the phenomenon of viewing larger or smaller, almost every one was partial to the same tendentiousness in both tests. That is, it doesn't influence the tendency of human's dimensional visual illusion whether the factor of inducement was acceded to or not. The higher values of complexity of polygons, the more phenomenon of larger-seeing will happen. Besides, we also discovered that except the first sample of irregular polygon, the larger-viewing phenomenon was existed on the other 4. It might be relative to the factor of jogging condition of figures. By defining the value of complexity and the method of calculating areas of irregular polygons, we offer a reference material in studies of dimensional visual illusion.

主题分类 人文學 > 藝術
参考文献
  1. 呂清夫(1984)。造形原理。台北:雄獅。
  2. 林書堯(1975)。視覺藝術。台北:維新書局。
  3. 近江源太郎(1990)。造形心理學。東京:福村。
  4. 金井省吾著、沙興亞譯(1988)。錯視圖形。台北:遠流出版社。
  5. 郡山正(1978)。設計的基礎。東京:近藤出版社。
  6. 馬場雄二著、王秀雄譯(1977)。美術設計的點線面。台北:台隆書店。
  7. 勝井三雄、神田昭夫、廣橋桂子著、林品章譯(1995)。平面色彩立體構成。台北:龍溪國際圖書有限公司。
  8. 朝倉直巳著、呂清夫譯(1991)。藝術、設計的平面構成。台北:新形象出版事業。
  9. 黃信夫、蔡登傳(2003)。人對不同形狀面積大小知覺的研究。中華民國設計學會第八屆設計學術研究成果研討會論文集
  10. 楊清田(1998)。造形設計與面積錯視的關係調查研究。台北:藝風堂出版社。
  11. 楊清田(1992)。反轉錯視原理與圖形設計。台北:藝風堂出版社。
  12. 楊清田(1997)。構成(一)。台北:三民書局。
  13. 葉慶貞、李傳房、謝承勳(2002)。不同圖形特徵對垂直-水平線錯視影響之研究。中華民國設計學會設計學術研究成果研討會論文集
  14. 蕭坤安、伊彬(2002)。造形輪廓的複雜性認知探討。中華民國設計學會設計學術研究成果研討會論文集
被引用次数
  1. 傅銘傳、孫慶文(2010)。Müller-Lyer錯視圖形之視線軌跡觀察與分析。藝術學報,87,125-141。
  2. 許子凡(2016)。從視覺複雜度與設計表現類型探討網頁資訊圖像之注目性。設計學研究,19(2),1-26。
  3. 許子凡、林品章(2009)。BBS圖像電子副語之判讀效率與滿意度研究。設計學研究,12(1),83-102。
  4. 許子凡、林演慶(2012)。教育背景對圖形符號複雜度之判讀績效研究。商業設計學報,16,187-200。
  5. 楊朝明、許子凡、王聖文(2017)。從設計表現類型與視覺複雜度探討網頁資訊圖像之理解性。設計學研究,20(1),1-22。