题名

影響電影票房價值因素之探討-以國產電影為例

并列篇名

Factors Effecting on the Value of Taiwanese Motion Pictures

作者

林谷峻(Ku-Jun Lin);羅雁紅(Yen-Hung Lo);吳晉賢(Chin-Hsien Wu)

关键词

文化創意產業 ; 國產電影 ; 票房收入 ; 價值 ; Cultural and Creative Industry ; Taiwanese Motion Pictures ; Box Office Revenue ; Value

期刊名称

藝術學報

卷期/出版年月

94期(2014 / 04 / 01)

页次

167 - 201

内容语文

繁體中文

中文摘要

本研究探討電影票房價值形成因素,建立預測模型,預測國產電影票房後比較預測值與實際票房的差異,提供投資人投資與電影工作者拍攝時的決策參考。經蒐集2002年至2012年上映的國產電影資料,以迴歸模型的方式分析,研究結果發現「演員知名度」、「上映時機」,是否為「續集」與「知名導演」等因素顯著影響電影票房;樣本預測票房之平均數可達實際票房的56.40%。研究結果可提升對電影票房的預測能力。後續研究建議可將如「導演拍攝手法」,「題材、故事以及影片如何呈現」等質化因素予以分類並設定標準,進一步解碼電影價值創造之來源。

英文摘要

The research discusses the elements that create film value. We construct a forecasting model then compare actual and estimated revenues of box offices. The result can provide information as a reference to investors and relevant movie workers for investing and production references. We use a regression model to analyze the Taiwanese films data from 2002 to 2012. We found components such as "award winner (actor/actress)", "release timing", "series" and "award winner (directors)" have significant influences on the performance of box offices. The average estimated revenues of box office is 56.40% of the actual ones. The result can increase the predicting power of film revenues of box office. We suggest further study can address on the classification and setting standards for qualitative components, such as "shooting technique" and "type of story and ways of demonstration", then further decoding the film value.

主题分类 人文學 > 藝術
参考文献
  1. 行政院新聞局九十五年度國產電影長片輔導金辦理要點(2006)
  2. Ainslie, A.,Dreze, X.,Zufryden, F.(2005).Modeling movie life cycles and market share.Marketing Science,24(3),508-517.
  3. Anast, P.(1967).Differential movie appeals as correlates of attendance.Journalism Quarterly,44(1),86-90.
  4. Austin, B. A.(1981).Film attendance: Why college students chose to see their most recent film.Journal of Popular Film and Television,9,43-49.
  5. Austin, B. A.(1984).Portrait of an art film audience.Journal of Communication,34,74-87.
  6. Chang, B.H.,Ki, E. J.(2005).Devising a practical model for predicting theatrical movies success: Focusing on the experience good property.Journal of Media Economics,18,247-269.
  7. Clement, M.,Proppe, D.,Rott, A.(2007).Do critics make bestsellers? Opinion leaders the success of books.The Journal of Media Economics,20(2),77-105.
  8. De Vany, A.(2004).Hollywood economics: How extreme uncertainty shapes the film industry.London:Routledge.
  9. Elberse, A.,Eliashberg, J.(2003).Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures.Marketing Science,22(3),329-354.
  10. Eliashberg, J.,Shugan, S. M.(1997).Film critics: Influencers or predictors.Journal of Marketing,61(2),68-78.
  11. Faber, R.,O'Guinn, T.(1984).Effect of media advertising and other sources on movie selection.Journalism Quarterly,61,371-377.
  12. Fu, W. W.,Lee, T. K.(2008).Economic and Cultural Influences on the Theatrical Consumption of Foreign Films in Singapore.Journal of Media Economics,21(1),1-27.
  13. Henning-Thurau, T.,Houston, M.,Walsh, G.(2007).Determinants of motion picture box office and profitability: An interrelationship approach.Review Managerial Science,1(1),65-92.
  14. Hsu, G.(2006).Jacks of all trades and masters of none: The principle of allocation.Administrative Science Quarterly,51(3),420-450.
  15. Kim, S.H.,Park, N.,Park, S. H.(2013).Exploring the Effects of Online Word of Mouth and Expert Reviews on Theatrical Movies' Box Office Success.Journal of Media Economics,26(2),98-114.
  16. Kindem, G.(1982).The American movie industry : The business of motion pictures.Carbondale, IL:Southern Illinois University Press.
  17. Koschat, M. A.(2012).The Impact of Movie Reviews on Box Office: Media Portfolios and the Intermediation of Genre.Journal of Media Economics,25(3),35-53.
  18. Lee, L. F.(2006).Cultural Discount and Cross-Culture Predictability: Examining the Box Office Performance of American Movies in Hong Kong.Journal of Media Economics,19(4),259-276.
  19. Lee, S.-W.,Waterman D.(2007).Theatrical feature film trade in the United States, Europe, and Japan since 1950s: An empirical study of the home market effect.The Journal of Media Economics,20(3),167-188.
  20. Litman, B. R.(1983).Predicting success of theatrical movies : An empirical study.Journal of Popular Culture,16,159-175.
  21. Litman, B. R.(1982).Decision making in the film industry: The influence of the TV market.Journal of Communication,32,33-52.
  22. Litman, B. R.,Kohl, A.(1989).Predicting financial success of motion pictures: The 80's experience.The Journal of Media Economics,2(1),35-50.
  23. Mark, J. F.,Andrew, R.(2008).Investing in movies.Journal of Asset Management,9(1),22-40.
  24. Neelamegham, R.,Chinatagunta, P.(1999).A Bayesian model to forecast new product performance in domestic and international markets.Marketing Science,18(2),155-136.
  25. Nelson, R. A.,Donihue, M. R.,Waldman, D. M.,Wheaton, C.(2001).What's an Oscar worth?.Economic Inquiry,39(1),1-16.
  26. Papies, D.,Clement, M.(2008).Adoption of new movie distribution services on the internet.The Journal of Media Economics,21(3),131-157.
  27. Preston, P.,Sparviero, S.(2009).Creative inputs as the cause of Baumol's cost disease: the example of media services.The Journal of Media Economics,22(4),239-252.
  28. Radas, S.,Shugan, S. M.(1998).Seasonal marketing and timing new product introductions.Journal of Marketing Research,35(3),296-316.
  29. Ravid, S. A.(1999).Information, blockbusters, and stars: A study of the film industry.Journal of Business,72(4),463-492.
  30. Sawhney, M. S.,Eliashberg, J.(1996).A prsimonious model for forecasting gross box office revenues of motion pictures.Marketing Science,15(2),463-492.
  31. Simonoff, J. S.,Sparrow, I. R.(2000).Predicting movie grosses: winners and losers, blockbuster and sleepers.Chance Magazine,13(3),15-24.
  32. Simonton, D. K.(2011).Great Flicks: Scientific Studies of Cinematic Creativity and Aesthetics.New Yor:Oxford University Press.
  33. Smith, S. P.,Smith, V. K.(1986).Successful movies: A preliminary empirical analysis.Applied Economics,18,501-507.
  34. Sochay, S.(1994).Predicting the performance of motion pictures.The Journal of Media Economics,7(4),1-20.
  35. Terry, N.,Bulter, M.,De'Armond, D.(2005).The determinants of domestic box office performance.Southwestern Economic Review,32(1),137-148.
  36. Treme, J.(2010).Effects of Celebrity Media Exposure on Box-Office Performance.Journal of Media Economics,23(1),5-16.
  37. Treme, J.,Craig, A.L.(2013).Celebrity star power: Do age and gender effects influence box office performance.Applied Economics Letters,20(5),440-445.
  38. Walls, D. W.(2009).Robust analysis of movie earnings.The Journal of Media Economics,22(1),20-35.
  39. Wyatt, R. O.,Badger, D. P.(1990).Effects of information and evaluation in film criticism.Journalism Quarterly,67,359-368.
  40. Yang, J & Kim, W.(2014).Seasonality in the Non-U.S. Motion Picture Industry: A Case of South Korea.Journal of Media Economics,27(1),38-55.
  41. 王建陵(2009)。明星、導演影響力與電影票房:基於我國電影市場的實證研究。中國傳媒報告,8(1),111-118。
  42. 台灣電影網(2014.3.7) 。資料取自網址:www.twiwancinema.com/IVaTrackback/trackback.asp?id=131
  43. 行政院新聞局(1999)。台灣觀眾電影消費行為暨對國產電影需求調查報告焦點座談會部分。台北:行政院新聞局。
  44. 行政院新聞局(2009)。行政院新聞局(2009) 。電視內容、電影及流行音樂3 產業發展旗艦計畫:頁32-58。
  45. 行政院新聞局(1999)。台灣觀眾電影消費行為暨對國產電影需求調查報告─面對面訪問部分。台北:行政院新聞局。
  46. 行政院經建會(2003)。行政院經建會(2003) 。文化創意產業發展計畫,挑戰2008:國家發展計畫。
  47. 李心嵐(2000)。碩士論文(碩士論文)。台北,國立政治大學國際貿易學系。
  48. 李祐寧(2010)。如何拍攝電影。台北:商周出版。
  49. 李道明(1974)。電影觀眾對電影的一般態度。影響雜誌,8,100-104。
  50. 林伯龍(2009)。碩士論文(碩士論文)。斗六,國立雲林科技大學企業管理研究所。
  51. 洪誠孝(2008)。碩士論文(碩士論文)。台北,政治大學智慧財產研究所。
  52. 馬雅琦(2001)。碩士論文(碩士論文)。台北,臺灣師範大學大眾傳播研究所。
  53. 張心穎(2008)。推動文創意產業的火車頭─「電影產業」。Brighten Taiwan' s SMILE,21,2-7。
  54. 楊士賢(2002)。碩士論文(碩士論文)。高雄,中山大學企業管理系。
  55. 劉小芳(1999)。碩士論文(碩士論文)。南投,國立暨南國際大學。
  56. 劉瑋婷(2010) 。台灣電影產業之未來與挑戰。資料於2014/3/7取自於台灣經濟研究院全球資訊網,網址:www.tier. org.tw/comment/201008.pdf
  57. 盧非易(1997)。台灣電影映演市場研究:以1994 年為例。廣播與電視,67-191。
被引用次数
  1. 劉立行,黃韋傑(2019)。預告片構成要素之文本分析-以「金預告片獎」最佳預告片為例。聯大學報,16(2),51-78。
  2. (2017)。電影《艋舺》少年幫派議題再現之研究。區域與社會發展研究期刊,8,55-78。