题名

微型PCB鑽頭再研磨機台自動化光學檢測系統之發展

并列篇名

Development of an Automatic Optical Inspection System for a Micro PCB Drill Bits Re-Sharpening Machine

作者

楊儒松(Ju-Sung Yang);陳冠宇(Kuan-Yu Chen);范憶華(Yi-Hua Fan);林俊源(Chun-Yuan Lin)

关键词

PCB鑽頭再研磨 ; 自動化光學檢測 ; 類神經網路 ; 分類器 ; PCB drills regrinding ; automated optical inspection ; neural network ; classifier

期刊名称

先進工程學刊

卷期/出版年月

8卷4期(2013 / 10 / 01)

页次

259 - 267

内容语文

繁體中文

中文摘要

隨著現代科技與理論的快速發展,近年來消費性電子產品越趨普及且智慧化,消費者對於電子產品的要求越來越高,包括功能的多樣性、電池的續航力及攜帶的方便性等,因此,電子產品的輕量化及薄型化成為主要的發展趨勢,其中為了裝載更多電子元件,印刷電路板(printed circuit board,PCB)必須朝向多層設計發展且其佈線愈趨細微,亦即鑽孔孔徑越來越微小,使得微型鑽頭成為PCB製程中的重要耗材之一,因此,微型鑽頭再研磨的需求量與重要性在PCB產業中與日俱增,為求降低成本及穩定產品的供貨量和品質,自動化再研磨機台的發展受到廣泛的重視。本文的研究目的即運用光學取像和數位影像處理技術,發展微型PCB鑽頭再研磨機台的自動化光學檢測系統,其中主要的研究內容包含二個部份:第一部份計算刃面影像的缺陷值與檢驗的標準值進行缺陷檢測,以判定鑽頭再研磨後的良劣,期望能依據缺陷種類反向調整機台的參數設定;第二部份為嘗試使用類神經網路訓練分類器進行缺陷檢測及分類,期望能降低缺陷檢測分類的時間,提升整體研磨的效率。根據實驗結果,本文發展的自動化光學檢測系統能成功檢驗出9種缺陷,分類正確率可達92%以上。

英文摘要

With the rapid development of modern technologies and theories, consumer electronic products are much more popular and smart than before. Hence, customers demand features of high-quality, multi-function, easy-use, and long battery life to fit in with electronic products. Therefore, slim and lightweight electronic devices become a major trend. To mounting more electronic components on the printed circuit board (PCB), multi-layer designs and subtle wiring technique must be developed under the requirement of holes drilling smaller and improvement to re-sharpen drill bits. That is, in order to cost down and ensure high quality and quantity towards products, PCB drill bits development of automatic grinding machine has widely gained attention. The purpose of this study is to develop automatic optical inspection system for PCB micro drill bits re-sharpening machine by using optical image capturing and digital image processing technologies with two major concerns. The first one is to identify the performance of regrinding drill bits by calculating and comparing the defects in drill bit images with the inspection standards. The second one is to use the artificial neural network training tool to examine and classify PCB drilling defects so that improvement for regrinding efficiency could be made. Experiment results show that in this study automatic optical inspection system can identify 9 types of defects with more than 92% of accuracy.

主题分类 工程學 > 工程學綜合
工程學 > 工程學總論
工程學 > 土木與建築工程
工程學 > 機械工程
工程學 > 化學工業
被引用次数
  1. 謝宗浩(2016)。以OpenCV發展立體視覺線掃描攝影機平台之三維影像重建技術。中原大學機械工程學系學位論文。2016。1-57。