题名

運動阻尼於向量式有限元素法靜力分析之研究

并列篇名

On the Static Analysis Using Vector Form Intrinsic Finite Element Method with Kinetic Damping

作者

莊清鏘(Ching-Chiang Chuang);陳璽予(Zi-Yu Chen);吳俊霖(Chiun-lin Wu)

关键词

向量式有限元素法 ; 質量阻尼 ; 運動阻尼 ; 靜力分析 ; vector form intrinsic finite element method ; mass proportional damping ; kinetic damping ; static analysis

期刊名称

先進工程學刊

卷期/出版年月

13卷2期(2018 / 07 / 01)

页次

49 - 55

内容语文

繁體中文

中文摘要

本研究主要利用運動阻尼概念進行向量式有限元素法的靜力分析,同時和原始向量式有限元素法的靜力模擬方式比較,說明其可行性。向量式有限元素法用點值描述、途徑單元、逆向運動、牛頓第二運動定律和顯式時間積分法分析結構反應,為動力分析方式,靜力分析要有消能或減速機制。原始的向量式有限元素法用正比質量的速度阻尼消散系統動態反應,但經常要多次的試誤和較多計算量,有時甚至不易獲得相應的靜力解。不同於傳統向量式有限元素法的靜力模擬方式,本研究改用運動阻尼,最後以簡單算例比較運動阻尼和質量阻尼靜力模擬的精確性、穩定性和有效性。

英文摘要

This paper presents an improved approach to conducting structural static analysis using the Vector Form Intrinsic Finite Element (also known as VFIFE) method with incorporation of kinetic damping. VFIFE is a powerful tool for conducting structural dynamic analysis, which integrates the ideas of mass particles, path of motion, fictitious reversed rigid body motion, Newton's second law of motion, and explicit time integration scheme. VFIFE needs to employ artificial energy dissipation and/or deceleration mechanisms in order to carry out static analysis. The original version of VFIFE introduces fictitious mass-velocity proportional damping to perform static analysis, which requires trial-and-error for selection of damping level and extra computational efforts to obtain accurate solutions. In contrast to the original VFIFE, this study suggests the usage of kinetic damping and illustrative examples are given to compare the proposed approach with the original VFIFE in terms of accuracy, numerical stability, and effectiveness.

主题分类 工程學 > 工程學綜合
工程學 > 工程學總論
工程學 > 土木與建築工程
工程學 > 機械工程
工程學 > 化學工業
参考文献
  1. Day, A. S.(1965).An introduction to dynamic relaxation.the Engineer,219,218-221.
  2. Han, S. E.,Lee, K. S.(2003).A study of the stabilizing process of unstable structures by dynamic relaxation method.Computers and Structures,81,1677-1688.
  3. Mattiasson, K.(1981).Numerical results from large deflection beam and frame problems analyzed by means of elliptic integrals.International Journal for Numerical Methods in Engineering,17(1),145-153.
  4. Otter, J. R. H.(1965).Computations for prestressed concrete reactor pressure vessels using dynamic relaxation.Nuclear Structural Engineering,1,61-75.
  5. Shih, C.,Wang, Y. K.,Ting, E. C.(2004).Fundamentals of a vector from intrinsic finite element: Part III. Convected material frame and examples.Journal of Mechanics,20(2),133-143.
  6. Ting, E. C.,Shih, C.,Wang, Y. K.(2004).Fundamentals of a vector from intrinsic finite element: Part II. Plane solid elements.Journal of Mechanics,20(2),123-132.
  7. Ting, E. C.,Shih, C.,Wang, Y. K.(2004).Fundamentals of a vector from intrinsic finite element: Part I. Basic procedure and plane frame element.Journal of Mechanics,20(2),113-122.
  8. Yu, R. C.,Ruiz, G.(2006).Explicit finite element modeling of static crack propagation in reinforced concrete.International Journal of Fracture,141(3-4),357-372.
  9. 丁承先,王仲宇(2008).向量式固體力學.中央大學工學院,橋梁工程研究中心.
  10. 丁承先,王仲宇,吳東岳,王仁佐,莊清鏘(2007).運動解析與向量式有限元.中央大學工學院,橋梁工程研究中心.
  11. 丁承先,段元鋒,吳東岳(2012).向量式結構力學.科學出版社.
  12. 張志宏(2003)。浙江大學。
  13. 陳聯盟(2005)。浙江大學。
被引用次数
  1. 莊清鏘,孫東磊,吳俊霖(2021)。向量式有限元素法於馬鞍型索網結構的找形研究。先進工程學刊,16(2),43-49。
  2. 莊清鏘,吳俊霖(2019)。含潛變效應鋼筋混凝土柱的向量式有限元素分析。先進工程學刊,14(2),55-62。