题名 |
基於卷積神經網路的低速阻斷服務攻擊檢測 |
并列篇名 |
Low-Rate Denial-of-Service detection based on Convolutional Neural Network |
作者 |
蔡旻諺(Min-Yan Tsai);徐禾瀚(Augustine Sii Ho Hann);卓信宏(Hsin-Hung Cho) |
关键词 |
低速阻斷服務攻擊 ; 入侵偵測系統 ; 卷積神經網路 ; Low-Rate Denial-of-Service ; Intrusion Detection System ; Convolutional neural networks |
期刊名称 |
資訊安全通訊 |
卷期/出版年月 |
26卷3期(2020 / 08 / 01) |
页次 |
51 - 62 |
内容语文 |
繁體中文 |
中文摘要 |
低速阻斷服務攻擊(Low-Rate Denial-of-Service, LDoS)是低運算能力的環境中常面臨攻擊手段,在此環境中,攻擊者可以將攻擊封包隱藏在足夠低速率的資料流當中以逃避檢測使得檢測的困難度被大幅提高,使得傳統的方法會因為資料量不夠多元導致無法順利提取特徵而無法精準識別攻擊者,為了改善此問題,本文採用人工智慧的卷積神經網路(Convolutional Neural Network, CNN)以達到更好的全域搜索,實驗結果表明,本文所提之方法可以有效地檢測出LDoS攻擊。 |
英文摘要 |
Low-Rate Denial-of-Service (LDoS) is an attack method often faced in environments with low computing power. In this environment, attackers can hide attack packets in sufficiently low-rate data streams to escape detection has greatly increased the difficulty of detection, which makes traditional methods unable to extract features smoothly due to insufficient data and cannot accurately identify attackers. In order to improve this problem, this article uses artificial intelligence convolutional neural networks (CNN) to achieve stronger global search, the experimental results show that the method proposed in this article can effectively detect LDoS attacks. |
主题分类 |
基礎與應用科學 >
資訊科學 |
参考文献 |
|
被引用次数 |
|