参考文献
|
-
Chen, Z. H.,Chen, Y. L.,Chang, W. Y.,Tsai, C. W.(2019).A Hybrid Classification Algorithm for Intrusion Detection System.Communications of the CCISA,25(1),14-27.
連結:
-
Alaba, F. A.,Othman, M.,Hashem, I. A. T.,Alotaibi, F.(2017).Internet of Things Security: A Survey.Journal of Network and Computer Applications,88,10-28.
-
Bridges, S. M.,Vaughn, R. B.(2000).Intrusion Detection via Fuzzy Data Mining.Proceedings of the Annual Canadian Information Technology Security Symposium
-
A. Burt and T. Pott, “Gitpaste-12: A New Worming Botnet with Reverse Shell Capability Spreading via GitHub and Pastebin, 2020, https://blogs.juniper.net/en-us/threat-research/gitpaste-12 (2021/01/14).
-
Cortes, C.,Vapnik, V.(1995).Support Vector Networks.Machine Learning.,20,273-297.
-
Duy, P. H.,Diep, N. N.(2017).Intrusion Detection Using Deep Neural Network.SoutheastAsian Journal Sciences,5(2),111-125.
-
Farahnakian, F.,Heikkonen, J.(2018).A Deep Auto-encoder based Approach for Intrusion Detection System.Proceedings of the International Conference on Advanced Communication Technology
-
Giacinto, G.,Perdisci, R.(2008).Intrusion detection in computer networks by a modular ensemble of one-class classifiers.Information Fusion,9(1),69-82.
-
Gilchrist, A.(2016).Industry 4.0: The Industrial Internet of Things.New York:Springer.
-
Goodfellow, I.,Bengio, Y.,Courville, A.(2016).Deep Learning.United States:The MIT Press.
-
Hand, D.,Yu, K.(2007).Idiot’s Bayes: Not So Stupid after All?.International StatisticalReview,69(3),385-398.
-
Hochreiter, S. ,Schmidhuber, J.(1997).Long Short-Term Memory.Neural Computation,9,1735-1780.
-
Kang, D.,Fuller, D.,Honavar, V.(2005).Learning classifiers for misuse and anomaly detection using a bag of system calls representation.Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop
-
Keller, J. M.,Gray, M. R.,Givens, J. A.(1985).A Fuzzy K-nearest Neighbor Algorithm.IEEE Transactions on System, Man, Cybernetics,15(4),580-585.
-
Kim, J.,Kim, J.,Thu, H. L. T.,Kim, H.(2016).Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection.Proceedings of the International Conference on Platform Technology and Service
-
R. M. Lee, M. J. Assante and T. Conway, “Analysis of the Cyber Attack on the Ukrainian Power Grid: Defense Use Case., 2016, https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf (2021/01/14).
-
Lee, W. P.,Chien, W. J.(2011).A Novel Differential Evolution with Co-evolution Strategy.Journal of Computers,6(3),594-602.
-
Li, Y.,Xia, J.,Zhang, S.,Yan, J.,Ai, X.,Dai, K.(2012).An Efficient Intrusion Detection System based on Support Vector Machines and Gradually Feature Removal Method.Expert Systems with Applications,39(1),424-430.
-
Liao, H. J,Lin, C. H. R.,Lin, Y. C.,Tung, K. Y.(2013).Intrusion Detection System: A Comprehensive Review.Journal Network Computer Applications,36(1),16-24.
-
Liaw, A.,Wiener, M.(2002).Classification and Regression by Random Forest.R News,2(3),18-22.
-
Mukkamala, S.,Sung, A. H.,Abraham, A.(2005).Intrusion detection using an ensemble of intelligent paradigms.Journal Network and Computer Applications,28(2),167-182.
-
Quinlan, J. R.(1986).Induction of Decision Trees.Machine Learning,1(1),81-106.
-
Redstonewill.Redstonewill, “Cross Entropy.” 2020..
-
Shon, T.,Moon, J.(2007).A Hybrid Machine Learning Approach to Network Anomaly Detection.Information Sciences,177(18),3799-3821.
-
Shone, N.,Ngoc, T. N.,Phai, V. D.,Shi, Q.(2018).A Deep Learning Approach to Network Intrusion Detection.IEEE Transactions on Emerging Topics in Computational Intelligence,2(1),41-50.
-
Storn, R.,Price, K.(1997).Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.Journal of Global Optimization,11,341-359.
-
Tang, T. A.,Mhamdi, L.,McLernon, D.,Zaidi, S. A. R.,Ghogho, M.(2016).Deep Learning Approach for Network Intrusion Detection in Software Defined Networking.Proceedings of the International Conference on Wireless Networks and Mobile Communications
-
Tian, Z.,Fong, S.(2016).Survey of Meta-Heuristic Algorithms for Deep Learning Training.Optimization Algorithms—Methods and Applications, IntechOpen
-
Tsai, C. F.,Hsu, Y. F.,Lin, C. Y.,Lin, W. Y.(2009).Intrusion Detection by Machine Learning: A Review.Expert Systems with Applications,36(10),11994-12000.
-
Tuba, E.,Tuba, M.,Simian, D.(2016).Adjusted Bat Algorithm for Tuning of Support Vector Machine Parameters.Proceedings of the IEEE Congress on Evolutionary Computation
-
University of New Brunswick, NSL-KDD dataset, https://www.unb.ca/cic/datasets/nsl.html (2021/01/18)
-
Yang, X. S.,Deb, S.,Fong, S.(2011).Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications.Proceedings of the International Conference on Networked Digital Technologies
-
Yin, C.,Zhu, Y.,Fei, J,He, X.(2017).A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks.IEEE Access,5,21954-21961.
-
Young, S. R.,Rose, D. C.,Karnowski, T. P.,Lim, S. H.,Patton, R. M.(2015).Optimizing Deep Learning Hyper-Parameters through An Evolutionary Algorithm.Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments
|