题名

Long Memory Analysis of Dry Bulk Freight Rates

并列篇名

波羅的海乾散貨運費率的長期記憶分析

DOI

10.6665/JLYIT.2014.13.26

作者

張超琦(Chao-Chi Chang)

关键词

波羅的海乾散貨運費率 ; 長期記憶 ; 波動 ; 厚尾 ; Long Memory ; Volatilities ; Fat Tails ; Dry Bulk Freight Rates

期刊名称

蘭陽學報

卷期/出版年月

13期(2014 / 06 / 01)

页次

26 - 43

内容语文

英文

中文摘要

本文旨在探究波羅的海乾散貨運費率的長期記憶現象。運用GPH、GSP、R/S檢定及FIGARCH、HYGARCH、FIAPARCH長期記憶GARCH模型來檢視。研究結果顯示,採用偏態t分配的長期記憶GARCH模型可能對於波羅的海乾散貨運費率較能精確估計,並且提升長期預測與定價的精確性。因此,對於波羅的海乾散貨運費率的風險估計,應將其長期記憶現象納入考量,同時所採用的GARCH模型應能一併考量波動的叢聚現象、不對稱性、厚尾及長期記憶等因素。這些結果可以應用在實務界從事乾散貨運費市場之風險管理。

英文摘要

This study aims to investigate the features of the dry bulk freight rates when there is a long memory effect. We employed GPH test, GSP test, the Rescaled Range Tests of Mandelbrot (1972) and Lo (1991), FIGARCH, HYGARCH and FIAPARCH models for the long memory test and estimation. Our results suggest that precise estimates of dry bulk freight rates may be acquired from a long memory in volatility models with skewed Student-t distribution. Such models might improve the long-term volatility forecast and more precise pricing of dry bulk freight contracts. We could extend these findings to the risk management in the dry bulk freight markets. Moreover, for appropriate risk evaluation of dry bulk freight rates, the degree of persistence should be examined and appropriate modelling that includes volatility clustering, asymmetry, leptokurtosis and long range dependence should be taken into consideration. We could extend this implication to the connection of the dry bulk freight market management.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
醫藥衛生 > 醫藥衛生綜合
生物農學 > 生物農學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 社會學
参考文献
  1. Aloui, C.,Mabrouk, C.(2010).Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tail GARCH models.Energy Policy,38(5),2326-2339.
  2. Baillie, R.T.,Bollerslev, T.,Mikkelsen, H.O.(1996).Fractionally integrated generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,74(1),3-30.
  3. Beltratti, A.,Morana, C.(2005).Statistical benefits of value-at-risk with long memory.The Journal of Risk,7(4),21-45.
  4. Bollerslev, T.(1987).A conditionally heteroskedastic time series model for speculative prices and rates of return.The Review of Economics and Statistics,69(3),542-547.
  5. Chen, Y.S.,Wang, S.T.(2004).The empirical evidence of the leverage effect on volatility in international bulk shipping market.Maritime Policy & Management,31(2),109-124.
  6. Davidson, J.(2004).Moment and memory properties of linear conditional heteroscedasticity models, and a new model.Journal of Business & Economic Statistics,22(1),16-29.
  7. Degiannakis, S.(2004).Volatility forecasting: evidence from a fractional integrated power ARCH skewed-t model.Applied Financial Economics,14(18),1333-1342.
  8. Engle, R.F.,Bollerslev, T.(1986).Modelling the persistence of conditional variance.Econometric Reviews,5,1-50.
  9. Fang, W.(2007).Analysis on long memory of the volatilities of international dry bulk freight index using fractal theory.Wireless Communications, Networking and Mobile Computing in Shanghai
  10. Geweke, J.,Porter-Hudak, S.(1983).The estimation and application of long memory time series models.Journal of time series analysis,4(4),221-238.
  11. Goulielmos, A.M.,Psifia, M.(2006).Shipping finance: time to follow a new track?.Maritime Policy & Management,33(3),301-320.
  12. Gu, X.B.,Li, X.Y.(2009).Empirical analysis on long memory property of Baltic Dry Index.Journal of Shanghai Maritime University,30(1),40-44.
  13. Hurst, H.E.(1951).Long-term storage capacity of reservoirs.Trans. Amer. Soc. Civil Eng.,116,770-808.
  14. Lo, A.W.(1991).Long-term memory in stock market prices.Econometrica,59(5),1279-1313.
  15. Mandelbrot, B.(1972).Statistical methodology for nonperiodic cycles: from the covariance to Rs analysis.Annals of Economic and Social Measurement,1(3),259-290.
  16. Mighri, Z.,Mokni, K.,Mansouri, F.(2010).Empirical analysis of asymmetric long memory volatility models in value-at-risk estimation.The Journal of Risk,13(1),55-128.
  17. Robinson, P.M.,Henry, M.(1999).Long and short memory conditional heteroskedasticity in estimating the memory parameter in levels.Economic Theory,15,299-336.
  18. Tang, T.L.,Shieh, S.J.(2006).Long memory in stock index future markets: a value-at-risk approach.Physica A: Statistical Mechanics and its Applications,366,437-448.
  19. Tse, Y.K.(1998).The conditional heteroskedasticity of the Yen-Dollar exchange rate.Journal of Applied Econometrics,13(1),49-55.