题名

Long Memory Analysis of Container Freight Indices with Volatility Process

并列篇名

貨櫃輪運價指數波動率的長期記憶分析

DOI

10.6665/JLYIT.2015.14.52

作者

張超琦(Chao-Chi Chang)

关键词

貨櫃輪運價指數 ; 長期記憶 ; 波動 ; 厚尾 ; Long Memory ; Volatilities ; Fat Tails ; Container freight indices

期刊名称

蘭陽學報

卷期/出版年月

14期(2015 / 06 / 01)

页次

52 - 67

内容语文

英文

中文摘要

本文旨在探究貨櫃輪運價指數波動率的長期記憶現象。運用GPH、GSP、R/S檢定及FIGARCH、HYGARCH、FIAPARCH長期記憶GARCH模型來檢視。研究結果顯示,採用t分配與偏態t分配的長期記憶GARCH模型可能對於貨櫃輪運價指數波動率較能精確估計,並且提升長期預測與定價的精確性。因此,對於貨櫃輪運價指數波動率的風險估計,應將其長期記憶現象納入考量,同時所採用的GARCH模型應能一併考量波動的叢聚現象、不對稱性、厚尾及長期記憶等因素。這些結果可以應用在實務界從事貨櫃輪運費市場之風險管理。

英文摘要

This study aims to investigate the features of the container freight indices when there is a long memory effect. We employed GPH test, GSP test, the Rescaled Range Tests of Mandelbrot (1972) and Lo (1991), FIGARCH, HYGARCH and FIAPARCH models for the long memory test and estimation. Our results suggest that precise estimates of container freight indices may be acquired from a long memory in volatility models with Student-t and skewed Student-t distribution. Such models might improve the longterm volatility forecast and more precise pricing of container freight contracts. We could extend these findings to the risk management in the container freight markets. Moreover, for appropriate risk evaluation of container freight indices, the degree of persistence should be examined and appropriate modelling that includes volatility clustering, asymmetry, leptokurtosis and long range dependence should be take into consideration. We could extend this implication to the connection of the container freight market management.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
醫藥衛生 > 醫藥衛生綜合
生物農學 > 生物農學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 社會學
参考文献
  1. Lambert, P. and Laurent, S. (2001), “Modelling financial times series using garch-type models and a skewed student density,” Universit´e de Li´ege
  2. Alizadeh, A.H.,Nomikos, N.K.(2011).Dynamics of the Term Structure and Volatility of Shipping Freight Rates.Journal of Transport Economics and Policy,45(1),105-128.
  3. Angelidis, T.,Skiadopoulos, G.(2008).Measuring the market risk of freight rates: A value-at-risk approach.International Journal of Theoretical and Applied Finance,11(5),447-469.
  4. Baillie, R. T.,Bollerslev, T.,Mikkelsen, H. O.(1996).Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,73(1),151-184.
  5. Bollerslev, T.(1986).Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,31,307-327.
  6. Bollerslev, T.(1987).A conditionally heteroskedastic time series model for speculative prices and rates of return.The Review of Economics and Statistics,69(3),542-547.
  7. Bollerslev, T.,Mikkelsen, H. O.(1996).Modelling and Pricing Long Memory in Stock Market Volatility.Journal of Econometrics,11(5),447-469.
  8. Brooks, C.,Burke, S. P.,Heravi, S.,Persand, G.(2005).Autoregressive conditional kurtosis.Journal of Financial Econometrics,3(3),399-421.
  9. Chen, Y. S.,Wang, S. T.(2004).The empirical evidence of the leverage effect on volatility in international bulk shipping market.Maritime Policy & Management,31(2),109-124.
  10. Christoffersen, P. F.(1998).Evaluating Interval Forecasts.International Economic Review,39(4),841-862.
  11. Davidson, J.(2004).Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model.Journal of Business & Economic Statistics,22(1),16-29.
  12. Fang, W.(2007).Analysis on long memory of the volatilities of international dry bulk freight index using fractal theory.Wireless Communications, Networking and Mobile Computing in Shanghai,Shanghai:
  13. Geweke, J.,Porter-Hudak, S.(1983).The estimation and application of long memory time series models.Journal of time series analysis,4(4),221-238.
  14. Goulielmos, A. M.,Psifia, M.(2006).Shipping finance: time to follow a new track?.Maritime Policy & Management,33(3),301-320.
  15. Gu, X. B.,Li, X. Y.(2009).Empirical Analysis on Long Memory Property of Baltic Dry Index.Journal of Shanghai Maritime University,30(1),40-44.
  16. Jorion, P.(1996).Risk2: Measuring the Risk in Value-At-Risk.Financial Analysts Journal,52,47-56.
  17. Kavussanos, M. G.(1996).Price risk modelling of different size vessels in tanker industry using Autoregressive Conditional Heteroscedasticity (ARCH) models.Logistics and Transportation Review,32(2),161-176.
  18. Kavussanos, M. G.,Dimitrakopoulos, D. N.(2011).Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets.International Review of Financial Analysis,20(5),258-268.
  19. Kupiec, P. H.(1995).Techniques for Verifying the Accuracy of Risk Measurement Models.The Journal of Derivatives,3(2),73-84.
  20. Luo, M.,Fan, L.,Liu, L.(2009).An econometric analysis for container shipping market.Maritime Policy & Management,36(6),507-523.
  21. Nelson, D. B.(1991).Conditional Heteroskedasticity in Asset Returns: A New Approach.Econometrica,59(2),347-370.
  22. Phillips, P. C. B.,Shimotsu, K.(2004).Local Whittle estimation in nonstationary and unit root cases.The Annals of Statistics,32(2),656-692.
  23. Robinson, P. M.(1995).Gaussian Semiparametric Estimation of Long-Range Dependence.Annals of Statistics,23,1630-1661.
  24. Robinson, P. M.,Henry, M.(1999).Long and Short Memory Conditional Heteroskedasticity in Estimating the Memory Parameter in Levels.Economic Theory,15,299-336t.
  25. Robinson, P.M.,Zaffaroni, P.(1998).Nonlinear time series with long memory: a model for stochastic volatility.Journal of Statistical Planning and Inference,68(2),359-371.
  26. Stopford, M.(2009).Maritime Economics.Oxon:Routledge.
  27. Weimer-Rasmussen, H.(2010).University of Aarhus.